
flux-data-qaqc Documentation

John Volk

Oct 15, 2021

Contents:

1 Installation 3
1.1 Developer mode . 4

2 Configuration Options and Caveats 5
2.1 Example data description . 5
2.2 Setting up a config file . 5
2.3 Input formatting and caveats . 8
2.4 Quality-based data filtering . 9
2.5 Averaging data from multiple sensors . 14

3 Tutorial 21
3.1 Description of example datasets . 21
3.2 Loading input . 21
3.3 Visualize input data . 28
3.4 Temporal resampling . 29
3.5 Energy balance corrections . 34
3.6 Other calculations . 36
3.7 A note on units . 37
3.8 Save resampled and corrected data . 38
3.9 Visualize resampled and corrected data . 39

4 Closure Methodologies 41
4.1 Data description . 41
4.2 Energy Balance Ratio method . 41
4.3 Bowen Ratio method . 46

5 API Reference 47
5.1 Data . 47
5.2 QaQc . 53
5.3 Plot . 62
5.4 utility classes and functions . 66

6 Automated testing with pytest 69
6.1 Running tests manually . 69

7 Contributors 71
7.1 OpenET team . 71

i

7.2 Acknowledgements . 71
7.3 Contributing . 72
7.4 Report issues or problems with the software . 72
7.5 Seek support or give feedback . 72

8 Change Log 73
8.1 Version 0.1.6 . 73
8.2 Version 0.1.5 . 73
8.3 Version 0.1.4 . 73
8.4 Version 0.1.3 . 74
8.5 Version 0.1.2 . 74
8.6 Version 0.1.1 . 74
8.7 Version 0.1.0 . 75
8.8 Version 0.0.9 . 75
8.9 Version 0.0.5 . 75
8.10 Version 0.0.1 . 76

9 Indices and tables 77

Python Module Index 79

Index 81

ii

flux-data-qaqc Documentation

View on GitHub.

flux-data-qaqc provides a framework to create reproducible workflows for validation and analysis of eddy co-
variance data. The package is intended for those who need to post-process flux data, particularly for generating daily
and monthly evapotransipration (ET) timeseries estimates with energy balance closure corrections applied. Applica-
tions where this software may be useful include analysis involving eddy covariance flux tower data, hydrologic or
atmospehric model validation, and irrigation and water consumption studies.

Key functionalities and tools include:

• data validation with methods for quality-based filtering

• time series data tools, e.g. temporal aggregation and resampling

• management of site metadata, data provenance, and file structure

• energy balance closure algorithms and other meterological calculations

• downloading and management of gridMET meterological data

• customizable and interactive data visualizations

• batch processing and unit conversions

Contents: 1

https://flux-data-qaqc.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/fluxdataqaqc/
https://pypi.python.org/pypi/fluxdataqaqc/
https://github.com/Open-ET/flux-data-qaqc
http://www.climatologylab.org/gridmet.html

flux-data-qaqc Documentation

2 Contents:

CHAPTER 1

Installation

Using PIP:

pip install fluxdataqaqc

PIP should install the necessary dependencies however it is recommended to use conda and first install the provided
virtual environment. This is useful to avoid changing your local Python environment. Note, flux-data-qaqc has
been tested for Python 3.7+, although it may work with versions greater than or equal to 3.4.

First make sure you have the fluxdataqaqc environment file, you can download it here. Next to install run,

conda env create -f environment.yml

To activate the environment before using the flux-data-qaqc package run,

conda activate fluxdataqaqc

Now install using PIP:

pip install fluxdataqaqc

Now all package modules and tools should be available in your Python environment PATH and able to be imported.
Note if you did not install the Conda virtual environment above, PIP should install dependencies automatically but be
sure to be using a version of Python above or equal to 3.4. To test that everything has installed correctly by opening a
Python interpretor or IDE and run the following:

import fluxdataqaqc

and

from fluxdataqaqc import Data, QaQc, Plot

If everything has been installed correctly you should get no errors.

3

https://raw.githubusercontent.com/Open-ET/flux-data-qaqc/master/environment.yml?token=AB3BJKUKL2ELEM7WPLYLXFC45WQOG

flux-data-qaqc Documentation

1.1 Developer mode

If you plan on contributing to flux-data-qaqc you can install it in developer mode which allows you to easily
modify the source code and test changes within a Python environment.

Clone or download from GitHub.

git clone https://github.com/Open-ET/flux-data-qaqc.git

Next move to the root directory and install and activate the conda environment:

conda env create -f environment.yml

Run the following to install flux-data-qaqc in developer mode into your environment,

pip install -e .

4 Chapter 1. Installation

https://github.com/Open-ET/flux-data-qaqc

CHAPTER 2

Configuration Options and Caveats

This tutorial shows how to use flux-data-qaqc with climate data of various formats and generally covers for-
matting rules of input data and extra options that can be set in a config file. The major differences when using
flux-data-qaqc for different input data lie in the config file declarations therefore the entire workflow from
Tutorial will work just the same once your config file is set up correctly.

2.1 Example data description

The data used in Configuration Options and Caveats is provided with flux-data-qaqc and can be downloaded
here. There are two datasets used in the following examples, the data used for showing quality based filtering of
data based on QC flags is from the FLUXNET 2015 dataset for site “ARM USDA UNL OSU Woodward Switchgrass
1” which contains switchgrass, more information on this site can be found here. The site that contains multiple soil
heat flux measurements for weighted averaging and soil moisture measurements for plotting is a subset (shortened for
reduced disk space) of the “ARM Southern Great Plains site- Lamont” AmeriFlux site dataset, more information on
this site can be found here.

A reproducible Jupyter Notebook with minor differences of this tutorial can be found here.

2.2 Setting up a config file

flux-data-qaqc starts with the creation of a configuration file, a text file with extension “.ini” or “.INI” that
follows the rules set here. A config file for flux-data-qaqc requires the sections: 1. METADATA 2. DATA
although you may provide additional for custom uses.

In METADATA you may enter any metadata that you wish so long as the entrie’s key is followed by an equal sign and
the assigned value, i.e.

key = value

Here are the mandatory metadata entries unique to flux-data-qaqc:

• climate_file_path

5

https://github.com/Open-ET/flux-data-qaqc/blob/master/examples/Config_options
http://sites.fluxdata.org/US-AR1/
http://ameriflux.lbl.gov/sites/siteinfo/US-ARM
https://github.com/Open-ET/flux-data-qaqc/blob/master/examples/Config_options/advanced_config_options.ipynb
https://docs.python.org/3/library/configparser.html#supported-ini-file-structure

flux-data-qaqc Documentation

• station_elevation

• station_longitude

• station_latitude

• site_id

The “climate_file_path” is the full or relative file path of the input climate file (excel or CSV, more on formatting this
below) containing the climatic data to be analyzed. The “station_elevation” (meters) and latitude/longitude (decimal
degrees) fields are used to calculate clear sky potential solar radiation using an ASCE formulation and to locate the
nearest gridMET cell centroid when downloading reference ET. “site_id” is used for saving output files.

Optional metadata entries that are used by flux-data-qaqc include “missing_data_value”, “qc_threshold”,
“qc_flag”, “var_name_delim”, “skiprows”, “date_parser”, and “gridmet_file_path”. “missing_data_value” is used
to correctly parse missing values in the input climate time series. All other optional metadata that can be used by
flux-data-qaqc except “gridmet_file_path” (which is simply the path to a file that is downloaded by QaQc.
download_gridMET) are explained within this page.

The DATA section of the config file is where you specify climate variables and their units following the same approach
explained above.

Here is a list of all the “expected” climate variable names in the DATA section of a config file, where keys are the keys
in the config file and values are the internal names used by flux-data-qaqc. This list can be accessed at any time
from Data.variable_names_dict:

>>> from fluxdataqaqc import Data
>>> Data.variable_names_dict

{'datestring_col' : 'date' ,
'net_radiation_col' : 'Rn' ,
'ground_flux_col' : 'G' ,
'latent_heat_flux_col' : 'LE' ,
'latent_heat_flux_corrected_col' : 'LE_user_corr' ,
'sensible_heat_flux_col' : 'H' ,
'sensible_heat_flux_corrected_col' : 'H_user_corr' ,
'shortwave_in_col' : 'sw_in' ,
'shortwave_out_col' : 'sw_out' ,
'shortwave_pot_col' : 'sw_pot' ,
'longwave_in_col' : 'lw_in' ,
'longwave_out_col' : 'lw_out' ,
'vap_press_col' : 'vp' ,
'vap_press_def_col' : 'vpd' ,
'avg_temp_col' : 't_avg' ,
'precip_col' : 'ppt' ,
'wind_spd_col' : 'ws'}

You may view these climate entry keys and values (as found in the config file) from within Python using the Data.
config property which contains all information listed in the config file as a configparser.ConfigParser
instance.

>>> config_path = 'config_for_QC_flag_filtering.ini'
>>> d = Data(config_path)
>>> # loop through a list of tuples with keys and values from DATA section
>>> for each in d.config.items('DATA'):
>>> print(each)

('datestring_col', 'date')
('net_radiation_col', 'Rn')
('net_radiation_units', 'w/m2')
('ground_flux_col', 'G')

(continues on next page)

6 Chapter 2. Configuration Options and Caveats

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

flux-data-qaqc Documentation

(continued from previous page)

('ground_flux_units', 'w/m2')
('latent_heat_flux_col', 'LE')
('latent_heat_flux_qc', 'a_qc_value')
('latent_heat_flux_units', 'w/m2')
('latent_heat_flux_corrected_col', 'LE_corrected')
('latent_heat_flux_corrected_units', 'w/m2')
('sensible_heat_flux_col', 'H')
('sensible_heat_flux_qc', 'a_qc_value')
('sensible_heat_flux_units', 'w/m2')
('sensible_heat_flux_corrected_col', 'H_corrected')
('sensible_heat_flux_corrected_units', 'w/m2')
('shortwave_in_col', 'sw_in')
('shortwave_in_qc', 'swrad_flag')
('shortwave_in_units', 'w/m2')
('shortwave_out_col', 'sw_out')
('shortwave_out_units', 'w/m2')
('shortwave_pot_col', 'sw_pot')
('shortwave_pot_units', 'w/m2')
('longwave_in_col', 'lw_in')
('longwave_in_units', 'w/m2')
('longwave_out_col', 'lw_out')
('longwave_out_units', 'w/m2')
('vap_press_col', 'na')
('vap_press_units', 'na')
('vap_press_def_col', 'vpd')
('vap_press_def_units', 'hPa')
('avg_temp_col', 't_avg')
('avg_temp_units', 'C')
('precip_col', 'ppt')
('precip_units', 'mm')
('wind_spd_col', 'ws')
('wind_spd_units', 'm/s')

You can also access the data from the Data.config as a dictionary, for example if your METADATA section has
an entry for “land_cover”, e.g.

[METADATA]
land_cover = CROP
...

then access this value with configparser.ConfigParser.get which returns the value of “land_cover” in the
config file’s METADATA section

>>> d.config.get('METADATA', 'land_cover')
CROP

Tip: If you are unsure if your config file’s metadata contains a specific entry you can pass the fallback keyword-
only argument to the configparser.ConfigParser.get method similar to a Python dictionary.

Here is an example,

>>> d.config.get('METADATA', 'land_cov', fallback='not given')
"not given"

2.2. Setting up a config file 7

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.get
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.get

flux-data-qaqc Documentation

2.3 Input formatting and caveats

2.3.1 Missing data

For parsing data gaps in input time series assign the “missing_data_value” to the METADATA section of the config
file. The value should be numeric, e.g.

missing_data_value = -999

If the input time series file does not contain all climate variables that are expeced by flux-data-qaqc, then specify
them as missing (‘na’) in the config file or simply do not list them in the config. Missing variables will be ignored
for the most part and will not be present in output files/plots, however if key variables for the energy balance are not
present (𝐿𝐸, 𝐻 , 𝐺, and 𝑅𝑛) then you will not be able to run energy balance closure correction routines.

2.3.2 Data file format

flux-data-qaqc accepts Microsoft Excel files (.xlx and .xlsx) and comma separated value (CSV) text files con-
taining time series input. The input file should have a column with combined date and time. Currently there is no
restriction on the temporal frequency of input data however it is automatically resampled to daily frequency before
running correction routines. Lastly, there should be a single header row containing all variable names followed by the
first entry of climatic variables.

Here is an example of a valid input file’s first 5 rows and 8 columns:

date t_avg sw_pot sw_in lw_in vpd ppt ws
2009-01-01 2.803 186.71 123.108 261.302 1.919 0 3.143
2009-01-02 2.518 187.329 121.842 268.946 0.992 0 2.093
2009-01-03 5.518 188.008 124.241 268.004 2.795 0 4.403
2009-01-04 -3.753 188.742 113.793 246.675 0.892 0 4.336

Note: If the the input datas temporal frequency is not recognized flux-data-qaqc will attempt to resample it
to daily frequency when it is used to create a QaQc object. Also, if a value is not recognized a numeric in any data
column it will be forced to a null value.

2.3.3 Data header formatting

A common format of some time series data is that the header row may not start on the first line of the file. If this is the
case you must add an entry to the METADATA section of the config file “skiprows” which states the number of rows
to skip before finding the header row. A caveat is that if using CSV data files you may have any number of comment
lines before the header so long as they start with a hashtag symbol “#” (comment), in this case you should not add
“skiprows” to METADATA.

2.3.4 Optimize data load time

flux-data-qaqc utilizes the pandas for most time series data management, specifically the usage of
datetime.datetime objects for advanced temporal analysis tools. If your file is large you can specify the datetime
format in the METADATA section of the config file to potentially greatly speedup the loading of data. For example if
your date column contains strings in the format year month day hour minute with no delimiters, e.g. 201401010000
for 2014 January 1st at midnight, then in the flux-data-qaqc config file you would enter:

8 Chapter 2. Configuration Options and Caveats

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://docs.python.org/3/library/datetime.html#datetime.datetime

flux-data-qaqc Documentation

date_parser = %Y%m%d%H%M

For more information of the correct date parser string for your date format see the directives of the datetime.
datetime.strptime here.

2.4 Quality-based data filtering

Currently flux-data-qaqc supports filtering out poor quality data based on user-provided quality control (QC)
values (numeric) or flags (characters) using the Data.apply_qc_flags method. This feature helps to facilitate
manual or semi-manual data filtering which is sometimes necessary during data preprocessing.

2.4.1 Flag-based filtering

Let’s say that you have a column in your input data named ‘QC_flag’ that contains character strings signifying the
assigned data quality for a climate time series. The flag is either ‘g’ meaning a data point is ‘good’ or if the flag is ‘b’
the data point is bad quality and you would like to filter it. Further let’s say that you want the filter to apply to your
latent energy and and sensible heat variables, then in your config file you would need to declare the flag for ‘bad’ data
(‘b’) to be filtered out in the METADATA section:

qc_flag = b

and in the DATA section of your config you will state that the ‘QC_flag’ column should be applied to your 𝐿𝐸 and 𝐻
variables:

latent_heat_flux_qc = QC_flag
sensible_heat_flux_qc = QC_flag

Now, when the Data.apply_qc_flags method is used the all date entries of 𝐿𝐸 and 𝐻 that have a “QC_flag”
value of ‘b’ will be forced to null in the Data.df property of a Data instance.

2.4.2 Threshold-based filtering

Another option is to use a numeric quality control value that exists in your input data along with a threshold value
which means that when the quality control value falls below this threshold you would like to exclude it from the
analysis. Let’s assume the column containing the quality control values is named ‘QC_values’ and it contains values
between 0 and 1 with 0 meaning the poorest quality data and 1 being the highest and that you would like to remove all
data for select variables with a quality control value below 0.5. Let’s further assume that you would like this to apply
to your incoming solar radiation variable. Then you would declare the threshold in the METADATA section of your
config file:

qc_threshold = 0.5

and in the DATA section of your config you will state that the ‘QC_value’ column should be applied to your incoming
shortwave radiation variable:

shortwave_in_qc = QC_value

Now you are all set to use the functionality, note that you may apply the same quality control value or flag column to
multiple climate variables (as shown in the first example). You may also use both numeric qualtiy control values and
character string flags for the same input dataset although they cannot both be applied to the same variable. In other

2.4. Quality-based data filtering 9

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

flux-data-qaqc Documentation

wordsf, if you have a column of quality control numeric values it cannot also have character strings mixed in. Another
option that is used in the example below is to declare multiple quality control flags that should be filtered out using a
comma separated list. For example in the provided example config the flags ‘x’ and ‘b’ are used to remove select days
from incoming shorwave radiation,

qc_flag = x, b

There is another option for specifying variables quality control values/flags. Name the column containing the qualtiy
control value/flag in your input climate file the same as the variable it corresponds to with the suffix “_QC”. For exam-
ple if your sensible heat column was named sens_h then your qualtiy control column should be named sens_h_QC.
If you use this option you do not need to specify the names in your config file.

2.4.3 Example with flags and thresholds

This example uses the provided time series and config files for QC flag filtering on GitHub. The data is from the
FLUXNET 2015 site “ARM USDA UNL OSU Woodward Switchgrass 1”. This location exhibits switchgrass fields,
more information on this site can be found here.

Because this dataset did not originally contain character Qa/Qc flags they were added for demonstration and applied
to shortwave radiation. To view the list of string flags specified in the config file,

>>> config_path = 'config_for_QC_flag_filtering.ini'
>>> d = Data(config_path)
>>> # view or reassign the numeric threshold specified in the config file
>>> d.qc_threshold

0.5

And to view the character QC flags if assigned in the config,

>>> d.qc_flag
['x', 'b']

The Data.qc_var_pairs attribute shows you which variables were found in your input file that have quality
control values assigned, it uses the names as found in the input file,

>>> d.qc_var_pairs
{'LE': 'a_qc_value', 'H': 'a_qc_value', 'sw_in': 'swrad_flag'}

Tip: The Data.qc_var_pairs dictionary can be updated in Python to assign different columns of QC values to
different time series variables.

Now let’s apply the QC values.

Note that in this example we mixed both numeric values and threshold with character flags, the numeric values are
being applied to 𝐿𝐸 and 𝐻 whereas the flags (‘x’ and ‘b’) are applied to incoming shortwave radiation.

>>> # make copys of before and after the QC filter is applied
>>> no_qc = d.df.input_LE.copy()
>>> no_qc_swrad = d.df.input_sw_in.copy()
>>> # apply QC flags/values
>>> d.apply_qc_flags()
>>> qc_def = d.df.input_LE.copy()
>>> qc_flag_swrad = d.df.input_sw_in.copy()

WARNING: renaming column Rn to input_Rn

(continues on next page)

10 Chapter 2. Configuration Options and Caveats

https://github.com/Open-ET/flux-data-qaqc/tree/master/examples/Config_options
http://ameriflux.lbl.gov/sites/siteinfo/US-AR1

flux-data-qaqc Documentation

(continued from previous page)

WARNING: renaming column G to input_G
WARNING: renaming column LE to input_LE
WARNING: renaming column H to input_H
WARNING: renaming column sw_in to input_sw_in
WARNING: renaming column sw_out to input_sw_out
WARNING: renaming column sw_pot to input_sw_pot
WARNING: renaming column lw_in to input_lw_in
WARNING: renaming column lw_out to input_lw_out
WARNING: renaming column vpd to input_vpd
WARNING: renaming column t_avg to input_t_avg
WARNING: renaming column ppt to input_ppt
WARNING: renaming column ws to input_ws

Note: This is a good time to point out that flux-data-qaqc may change the names of your input variables if
they exactly match the internal names used by the software (see Data.variable_names_dict, if this is the case
(as is above) a warning message is printed when reading in the data (accessing the df or monthly_df properties of
Data or QaQc for the first time) and the names will be modified with a prefix of “_input” as shown above.

Here is a plot showing the data before and after applying the filter.

>>> from bokeh.plotting import ColumnDataSource, figure, show
>>> from bokeh.models.formatters import DatetimeTickFormatter
>>> p = figure(x_axis_label='date', y_axis_label='swrad with data removed based on QC
→˓value')
>>> p.line(no_qc_swrad.index, no_qc_swrad, color='red', legend="no flag", line_
→˓width=2)
>>> p.line(no_qc_swrad.index, qc_flag_swrad, color='black', legend="flag = b or x",
→˓line_width=2)
>>> p.xaxis.formatter = DatetimeTickFormatter(days="%d-%b-%Y")
>>> show(p)

And for 𝐿𝐸,

>>> p = figure(x_axis_label='date', y_axis_label='LE with data removed based on QC
→˓value')
>>> p.line(no_qc.index, no_qc, color='red', legend="no QC", line_width=2)
>>> p.line(no_qc.index, qc_def, color='black', legend="QC=0.5", line_width=2)
>>> p.xaxis.formatter = DatetimeTickFormatter(days="%d-%b-%Y")
>>> show(p)

2.4.4 Alternative naming method for QC data

In this case the climate variables QC columns are named with the same base name as the climate variables with the
‘_QC’ suffix. For example if 𝐿𝐸 is named ‘LE_F_MDS’ in your input files header then the QC column is named
‘LE_F_MDS_QC’. If your time series data has qualtiy control header names which follow this convention they will
automatically be detected and used when you apply them using Data.apply_qc_flags, i.e. the column names
and variables they should be assigned to do not need to be declared in the config.ini file.

>>> import os
>>> config_path = os.path.join('..','Basic_usage','fluxnet_config.ini')
>>> d = Data(config_path)
>>> # view input files header, note the QC columns

(continues on next page)

2.4. Quality-based data filtering 11

flux-data-qaqc Documentation

(continued from previous page)

>>> d.header
Index(['TIMESTAMP', 'TA_F', 'TA_F_QC', 'SW_IN_POT', 'SW_IN_F', 'SW_IN_F_QC',

'LW_IN_F', 'LW_IN_F_QC', 'VPD_F', 'VPD_F_QC', 'PA_F', 'PA_F_QC', 'P_F',
'P_F_QC', 'WS_F', 'WS_F_QC', 'USTAR', 'USTAR_QC', 'NETRAD', 'NETRAD_QC',
'PPFD_IN', 'PPFD_IN_QC', 'PPFD_OUT', 'PPFD_OUT_QC', 'SW_OUT',
'SW_OUT_QC', 'LW_OUT', 'LW_OUT_QC', 'CO2_F_MDS', 'CO2_F_MDS_QC',
'TS_F_MDS_1', 'TS_F_MDS_1_QC', 'SWC_F_MDS_1', 'SWC_F_MDS_1_QC',
'G_F_MDS', 'G_F_MDS_QC', 'LE_F_MDS', 'LE_F_MDS_QC', 'LE_CORR',
'LE_CORR_25', 'LE_CORR_75', 'LE_RANDUNC', 'H_F_MDS', 'H_F_MDS_QC',
'H_CORR', 'H_CORR_25', 'H_CORR_75', 'H_RANDUNC', 'NEE_VUT_REF',
'NEE_VUT_REF_QC', 'NEE_VUT_REF_RANDUNC', 'NEE_VUT_25', 'NEE_VUT_50',
'NEE_VUT_75', 'NEE_VUT_25_QC', 'NEE_VUT_50_QC', 'NEE_VUT_75_QC',
'RECO_NT_VUT_REF', 'RECO_NT_VUT_25', 'RECO_NT_VUT_50', 'RECO_NT_VUT_75',
'GPP_NT_VUT_REF', 'GPP_NT_VUT_25', 'GPP_NT_VUT_50', 'GPP_NT_VUT_75',
'RECO_DT_VUT_REF', 'RECO_DT_VUT_25', 'RECO_DT_VUT_50', 'RECO_DT_VUT_75',
'GPP_DT_VUT_REF', 'GPP_DT_VUT_25', 'GPP_DT_VUT_50', 'GPP_DT_VUT_75',
'RECO_SR', 'RECO_SR_N'],

dtype='object')

Verify that the QC columns have been paired with corresponding climate variables

>>> d.qc_var_pairs
{'NETRAD': 'NETRAD_QC',
'G_F_MDS': 'G_F_MDS_QC',
'LE_F_MDS': 'LE_F_MDS_QC',
'H_F_MDS': 'H_F_MDS_QC',
'SW_IN_F': 'SW_IN_F_QC',
'SW_OUT': 'SW_OUT_QC',
'LW_IN_F': 'LW_IN_F_QC',
'LW_OUT': 'LW_OUT_QC',
'VPD_F': 'VPD_F_QC',
'TA_F': 'TA_F_QC',
'P_F': 'P_F_QC',
'WS_F': 'WS_F_QC'}

Note: FLUXNET files include their own qualtiy control flags for sensible heat and other variables where quality
threshold columns are named the same as the climate variable they correspond to with the “_QC” suffix. Therefore
they do not need to be defined in a config file before applying them.

For the dataset defined in the example “FLUXNET_config.ini” we did not specify a QC threshold or flag(s) in the
config file, therefore we must assign it when calling the Data.apply_qc_flags method (shown in Example of
threshold filtering).

>>> # view the QC threshold specified in the config file
>>> print(d.qc_threshold, type(d.qc_threshold))

None <class 'NoneType'>

Alternatively, you may assign the threshold of flag values at any time directly to a Data instance:

12 Chapter 2. Configuration Options and Caveats

flux-data-qaqc Documentation

>>> d.qc_threshold = .75

2.4.5 Example of threshold filtering

Be sure to validate QC thresholds or flags before applying them to make sure everything seems correct. Below we see
that the lowest QC values correspond with poor quality gap-fill data near the begining of the time series of sensible
heat (𝐻).

>>> from bokeh.models import LinearAxis, Range1d
>>> p = figure(x_axis_label='date', y_axis_label='sensible heat flux (w/m2)')
>>> p.extra_y_ranges = {"sec": Range1d(start=-0.1, end=1.1)}
>>> p.line(d.df.index, d.df['H_F_MDS'], color='red', line_width=1, legend='data')
>>> p.add_layout(LinearAxis(y_range_name="sec", axis_label='QC value'), 'right')
>>> p.circle(d.df.index, d.df['H_F_MDS_QC'], line_width=2, y_range_name="sec", legend=
→˓'QC')
>>> p.x_range=Range1d(d.df.index[0], d.df.index[365])
>>> p.xaxis.formatter = DatetimeTickFormatter(days="%d-%b-%Y")
>>> p.legend.location = "top_left"
>>> show(p)

WARNING: Insufficient data to calculate mean for multiple G measurements
WARNING: Insufficient data to calculate mean for multiple THETA measurements

As a reminder, the routine provided for numeric or theshold filtering removes all data entries that have been assigned
to a QC column and have a QC value that falls below some threshold.

>>> # apply QC numeric threshold filters
>>> d.apply_qc_flags(threshold=0.5)

Values with QC values < 0.5 are now removed (null) for any variable listed in Data.qc_var_pairs.

Caution: The Data.apply_qc_flags method applies the filter to all variables in the climate file that have a
QC column if columns are not specified in the config file.

To see all columns (variables) that may have been affected by the previous filter or to constrain them, modify the
declarations in the config file or within Data.qc_var_pairs, i.e.

>>> d.qc_var_pairs
{'NETRAD': 'NETRAD_QC',
'G_F_MDS': 'G_F_MDS_QC',
'LE_F_MDS': 'LE_F_MDS_QC',
'H_F_MDS': 'H_F_MDS_QC',
'SW_IN_F': 'SW_IN_F_QC',
'SW_OUT': 'SW_OUT_QC',
'LW_IN_F': 'LW_IN_F_QC',
'LW_OUT': 'LW_OUT_QC',
'VPD_F': 'VPD_F_QC',
'TA_F': 'TA_F_QC',
'P_F': 'P_F_QC',
'WS_F': 'WS_F_QC'}

Now let’s view the same sesnible heat flux time series after applying the threshold filter, notice the strange oscillating
artifact near the beginning of the time series as been removed:

2.4. Quality-based data filtering 13

flux-data-qaqc Documentation

>>> p = figure(x_axis_label='date', y_axis_label='sensible heat flux (w/m2)')
>>> p.extra_y_ranges = {"sec": Range1d(start=-0.1, end=1.1)}
>>> p.line(d.df.index, d.df['H_F_MDS'], color='red', line_width=1, legend='data')
>>> p.add_layout(LinearAxis(y_range_name="sec", axis_label='QC value'), 'right')
>>> p.circle(d.df.index, d.df['H_F_MDS_QC'], line_width=2, y_range_name="sec", legend=
→˓'QC')
>>> p.x_range=Range1d(d.df.index[0], d.df.index[365])
>>> p.xaxis.formatter = DatetimeTickFormatter(days="%d-%b-%Y")
>>> p.legend.location = "top_left"
>>> show(p)

See also:

Step 0, manual cleaning of poor quality data for an example that shows how to filter poor quality data after loading
data into a QaQc object.

2.5 Averaging data from multiple sensors

2.5.1 Non-weighted averaging

If the climate station being analyzed has multiple sensors for the same variable (e.g. sensible heat flux) you can easily
tell flux-data-qaqc to use their non-weighted average of for flux-data-qaqc routines including energy
balance closure corrections or interactive visualizations. To do so simply list the variable names (as found in the
file header) with a delimiter of your choice and then list the delimiter in the METADATA section. Example, if you
have three sensible heat variables named “h_1”, “sens_h_2”, and “sensible heat, (w/m2)” then in your config file’s
METADATA you would write:

var_name_delim = ;

and the sensible heat assignment in the DATA section would read:

sensible_heat_flux_col = h_1;sens_h_2;sensible heat, (w/m2)

Caution: Because there is a comma in the last variable name we cannot use a comma as the name delim-
iter. Also, if you do not state the delimiter of variable names in the METADATA section of the config file,
flux-data-qaqc will look for the single variable name “h_1;sens_h_2;sensible heat, (w/m2)” in the header
which will not be found.

flux-data-qaqc will name the average in this case as H_mean, in general it will add the suffix “_mean” to
the internal name of the variable used by flux-data-qaqc which can be found in the keys of the Data.
variable_names_dict dictionary.

Hint: If you use any averaging option for an energy balance component, i.e. latent energy, sensible heat, net radiation,
or soil heat flux, the average will also be used in energy balance closure corrections.

14 Chapter 2. Configuration Options and Caveats

flux-data-qaqc Documentation

2.5.2 Weighted averaging

flux-data-qaqc provides the ability to read in multiple soil heat flux/moisture variables for a given station loca-
tion, calculate their weighted or non weighted average, and write/plot their daily and monthly time series. Currently
weighted averaging is only provided for soil heat flux and soil moisture variables, using this config option is also the
only way to automatically produce time series plots of these variables when using QaQc.plot. This may be useful
for comparing/validating multiple soil heat/moisture probes at varying locations or depths or varying instrumentation.

Here is what you need to do to use this functionality:

1. List the multiple soil variable names in your config file’s DATA section following the convention:

• For multiple soil heat flux variables config names should begin with “G_” or “g_” followed by an integer starting
with 1,2,3,. . . i.e. g_[number]. For example:

g_1 = name_of_my_soil_heat_flux_variable

For soil moisture variables the name of the config variable should follow “theta_[number]” for example:

theta_1 = name_of_my_soil_moisture_variable

2. List the units of each variable. To specify the units of your soil flux/moisture variables add “_units” to the config
name you assigned:

g_1_units = w/m2
theta_1_units = cm

3. To set weights for multiple variables to compute weighted averages assign the “_weight” suffix to their names
in the config file. For example, to set weights for multiple soil heat flux variables:

g_1_weight = 0.25
g_2_weight = 0.25
g_3_weight = 0.5

Hint: If weights are not given the arithmetic mean will be calculated. Or if the weights do not sum to 1, they will be
automatically normalized so that they do.

As in the case for non-weighted averaging for any energy balance component, if you use this option for soil heat flux
(𝐺), the weighted average will also be used in energy balance closure corrections.

2.5.3 Weighted average example

This example uses time series data recorded from the “ARM Southern Great Plains site- Lamont” AmeriFlux eddy
covariance tower, more information on this site can be found here.

Here is the DATA section of the config file that defines the multiple 𝐺 variables in the input data file used for the
example below, we put a much higher weight on the 𝐺 sensors “G_2_1_1” and “G_3_1_1”,

[DATA]
g_1 = G_1_1_1
g_1_units = w/m2
g_1_weight = 1
g_2 = G_2_1_1
g_2_units = w/m2
g_2_weight = 10

(continues on next page)

2.5. Averaging data from multiple sensors 15

http://ameriflux.lbl.gov/sites/siteinfo/US-ARM

flux-data-qaqc Documentation

(continued from previous page)

g_3 = G_3_1_1
g_3_units = w/m2
g_3_weight = 10
g_4 = G_4_1_1
g_4_units = w/m2
g_4_weight = 1
...

Note, the naming system of these variables (from AmeriFlux conventions) indicates that the multiple 𝐺 sensors are
spaced in differing horizontal locations from one another.

There are many soil moisture sensors at this site, because we are not using these variables within any calculations and
simply want them to be loaded in and later plotted we will not assign weights to them and therefore the arithmetic
mean will be calculated and added to output plots and time series files. Here is what is listed in the DATA section of
the config file for multiple soil moisture recordings in this case:

[DATA]
theta_1 = SWC_1_1_1
theta_1_units = (%): Soil water content (volumetric), range 0-100
theta_2 = SWC_2_1_1
theta_2_units = (%): Soil water content (volumetric), range 0-100
theta_3 = SWC_1_2_1
theta_3_units = (%): Soil water content (volumetric), range 0-100
theta_4 = SWC_2_2_1
theta_4_units = (%): Soil water content (volumetric), range 0-100
theta_5 = SWC_3_1_1
theta_5_units = (%): Soil water content (volumetric), range 0-100
theta_6 = SWC_4_1_1
theta_6_units = (%): Soil water content (volumetric), range 0-100
theta_7 = SWC_3_2_1
theta_7_units = (%): Soil water content (volumetric), range 0-100
theta_8 = SWC_4_2_1
theta_8_units = (%): Soil water content (volumetric), range 0-100
theta_9 = SWC_1_3_1
theta_9_units = (%): Soil water content (volumetric), range 0-100
theta_10 = SWC_1_4_1
theta_10_units = (%): Soil water content (volumetric), range 0-100
theta_11 = SWC_1_5_1
theta_11_units = (%): Soil water content (volumetric), range 0-100
theta_12 = SWC_1_6_1
theta_12_units = (%): Soil water content (volumetric), range 0-100
theta_13 = SWC_2_3_1
theta_13_units = (%): Soil water content (volumetric), range 0-100
theta_14 = SWC_2_3_2
theta_14_units = (%): Soil water content (volumetric), range 0-100
theta_15 = SWC_2_2_2
theta_15_units = (%): Soil water content (volumetric), range 0-100
theta_16 = SWC_2_1_2
theta_16_units = (%): Soil water content (volumetric), range 0-100
...

Hint: The units for soil moisture variables will be used in the y-axis daily and monthly time series plots when they
are created by QaQc.plot.

Now that the config file has been setup, let’s verify that everything was read in correctly,

16 Chapter 2. Configuration Options and Caveats

flux-data-qaqc Documentation

>>> # read in the data
>>> config_path = 'config_for_multiple_soil_vars.ini'
>>> d = Data(config_path)
>>> # note the newly added multiple g and theta variables
>>> d.variables

{'date': 'TIMESTAMP_START',
'Rn': 'NETRAD_1_1_1',
'LE': 'LE_1_1_1',
'H': 'H_1_1_1',
'sw_in': 'SW_IN_1_1_1;SW_IN_1_1_2',
'sw_out': 'SW_OUT_1_1_1',
'lw_in': 'LW_IN_1_1_1',
'lw_out': 'LW_OUT_1_1_1',
'vpd': 'VPD_PI_1_1_1',
't_avg': 'T_SONIC_1_1_1',
'ws': 'WS_1_1_1;WS_1_2_1',
'g_1': 'G_1_1_1',
'g_2': 'G_2_1_1',
'g_3': 'G_3_1_1',
'g_4': 'G_4_1_1',
'theta_1': 'SWC_1_1_1',
'theta_2': 'SWC_2_1_1',
'theta_3': 'SWC_1_2_1',
'theta_4': 'SWC_2_2_1',
'theta_5': 'SWC_3_1_1',
'theta_6': 'SWC_4_1_1',
'theta_7': 'SWC_3_2_1',
'theta_8': 'SWC_4_2_1',
'theta_9': 'SWC_1_3_1',
'theta_10': 'SWC_1_4_1',
'theta_11': 'SWC_1_5_1',
'theta_12': 'SWC_1_6_1',
'theta_13': 'SWC_2_3_1',
'theta_14': 'SWC_2_3_2',
'theta_15': 'SWC_2_2_2',
'theta_16': 'SWC_2_1_2'}

Note, the windspeed and shortwave incoming radtiation columns were assigned multiple variables as well, these will
be used to calculate the non-weighted mean as described in Non-weighted averaging.

Check the units assignment:

>>> d.units
{'Rn': 'w/m2',
'LE': 'w/m2',
'H': 'w/m2',
'sw_in': 'w/m2',
'sw_out': 'w/m2',
'lw_in': 'w/m2',
'lw_out': 'w/m2',
'vpd': 'hPa',
't_avg': 'C',
'ws': 'm/s',
'g_1': 'w/m2',
'g_2': 'w/m2',
'g_3': 'w/m2',
'g_4': 'w/m2',
'theta_1': '(%): Soil water content (volumetric), range 0-100',

(continues on next page)

2.5. Averaging data from multiple sensors 17

flux-data-qaqc Documentation

(continued from previous page)

'theta_2': '(%): Soil water content (volumetric), range 0-100',
'theta_3': '(%): Soil water content (volumetric), range 0-100',
'theta_4': '(%): Soil water content (volumetric), range 0-100',
'theta_5': '(%): Soil water content (volumetric), range 0-100',
'theta_6': '(%): Soil water content (volumetric), range 0-100',
'theta_7': '(%): Soil water content (volumetric), range 0-100',
'theta_8': '(%): Soil water content (volumetric), range 0-100',
'theta_9': '(%): Soil water content (volumetric), range 0-100',
'theta_10': '(%): Soil water content (volumetric), range 0-100',
'theta_11': '(%): Soil water content (volumetric), range 0-100',
'theta_12': '(%): Soil water content (volumetric), range 0-100',
'theta_13': '(%): Soil water content (volumetric), range 0-100',
'theta_14': '(%): Soil water content (volumetric), range 0-100',
'theta_15': '(%): Soil water content (volumetric), range 0-100',
'theta_16': '(%): Soil water content (volumetric), range 0-100'}

View these variables and their weights as written in the config file:

>>> d.soil_var_weight_pairs
{'g_1': {'name': 'added_G_col', 'weight': '6'},
'g_2': {'name': 'another_G_var', 'weight': '2'},
'g_3': {'name': 'G', 'weight': '0.5'},
'g_4': {'name': 'final_G_var', 'weight': '0.25'},
'g_5': {'name': 'yet_another_G', 'weight': '0.25'},
'theta_1': {'name': 'soil_moisture_z1', 'weight': '0.25'},
'theta_2': {'name': 'soil_moisture_z10', 'weight': '0.75'}}

When the data is first loaded into memory the weighted (and non-weighted) averages are calculated. At this stage
weights will be automatically normalized so that they sum to one and the new weights will be printed if this occurs.

>>> # load daily or monthly dataframe to calculate the weighted averages if they exist
>>> d.df.head();

g weights not given or don't sum to one, normalizing
Here are the new weights:
G_1_1_1:0.05, G_2_1_1:0.45, G_3_1_1:0.45, G_4_1_1:0.05

Calculating mean for var: THETA from columns: ['SWC_1_1_1', 'SWC_2_1_1', 'SWC_1_2_
→˓1', 'SWC_2_2_1', 'SWC_3_1_1', 'SWC_4_1_1', 'SWC_3_2_1', 'SWC_4_2_1', 'SWC_1_3_1',
→˓'SWC_1_4_1', 'SWC_1_5_1', 'SWC_1_6_1', 'SWC_2_3_1', 'SWC_2_3_2', 'SWC_2_2_2', 'SWC_
→˓2_1_2']

Calculating mean for var: sw_in
from columns: ['SW_IN_1_1_1', 'SW_IN_1_1_2']

Calculating mean for var: ws
from columns: ['WS_1_1_1', 'WS_1_2_1']

In this example, shortwave incoming radiation and windspeed were also averaged (non-weighted) from multiple
recordings as described in Non-weighted averaging.

The weights have been changed and updated as we would expect for 𝐺, you may ignore the weights for soil moisture
in this case- because they were not assigned the arithmetic mean is calculated and the weights are not used.

>>> d.soil_var_weight_pairs
{'g_1': {'name': 'G_1_1_1', 'weight': 0.045454545454545456},
'g_2': {'name': 'G_2_1_1', 'weight': 0.45454545454545453},
'g_3': {'name': 'G_3_1_1', 'weight': 0.45454545454545453},
'g_4': {'name': 'G_4_1_1', 'weight': 0.045454545454545456},
'theta_1': {'name': 'SWC_1_1_1', 'weight': 1},
'theta_2': {'name': 'SWC_2_1_1', 'weight': 1},

(continues on next page)

18 Chapter 2. Configuration Options and Caveats

flux-data-qaqc Documentation

(continued from previous page)

'theta_3': {'name': 'SWC_1_2_1', 'weight': 1},
'theta_4': {'name': 'SWC_2_2_1', 'weight': 1},
'theta_5': {'name': 'SWC_3_1_1', 'weight': 1},
'theta_6': {'name': 'SWC_4_1_1', 'weight': 1},
'theta_7': {'name': 'SWC_3_2_1', 'weight': 1},
'theta_8': {'name': 'SWC_4_2_1', 'weight': 1},
'theta_9': {'name': 'SWC_1_3_1', 'weight': 1},
'theta_10': {'name': 'SWC_1_4_1', 'weight': 1},
'theta_11': {'name': 'SWC_1_5_1', 'weight': 1},
'theta_12': {'name': 'SWC_1_6_1', 'weight': 1},
'theta_13': {'name': 'SWC_2_3_1', 'weight': 1},
'theta_14': {'name': 'SWC_2_3_2', 'weight': 1},
'theta_15': {'name': 'SWC_2_2_2', 'weight': 1},
'theta_16': {'name': 'SWC_2_1_2', 'weight': 1}}

Now the dataframe also has the weighted means that will be named g_mean and theta_mean,

>>> d.df.columns
Index(['input_t_avg', 'input_sw_pot', 'input_sw_in', 'input_lw_in',

'input_vpd', 'input_ppt', 'input_ws', 'input_Rn', 'input_sw_out',
'input_lw_out', 'input_G', 'input_LE', 'LE_corrected', 'input_H',
'H_corrected', 'added_G_col', 'another_G_var', 'final_G_var',
'yet_another_G', 'soil_moisture_z1', 'soil_moisture_z10', 'a_qc_value',
'swrad_flag', 'g_mean', 'theta_mean'],

dtype='object')

Note: Even though we did not specify “ground_flux_col” in the config file, the weighted average value has now been
used to update this variable. Therefore the weighted mean will be used in energy balance closure correction routines
if they are subsequently run.

Check which variable will be used as 𝐺 later if closure corrections are used:

>>> d.variables.get('G')
'g_mean'

Now, let’s visualize the resulting weighted average of multiple 𝐺 measurements and their individual daily time series,

>>> # get just G columns for plot arguments
>>> G_cols = [c for c in d.df.columns if c.startswith(('g_','G_'))]
>>> G_cols

['G_1_1_1', 'G_2_1_1', 'G_3_1_1', 'G_4_1_1', 'g_mean']

The example below creates the time series plot with a short span of data for easier visibility of weighted mean,
it also used the plot routines provided by Data and QaQc which are inhereted from the Plot class within
flux-data-qaqc. Specifically this example utilizes Plot.add_lines which makes the time series plotting
of multiple variables more efficient and automatically handles the hover tooltips.

>>> from fluxdataqaqc.plot import ColumnDataSource # for hover tooltips
>>> # shorter period for visualization
>>> df = d.df.loc['01/01/2008':'05/01/2008', G_cols]
>>> plt_vars = G_cols
>>> colors = ['blue', 'red', 'orange', 'green', 'black']
>>> x_name = 'date'
>>> source = ColumnDataSource(df)

(continues on next page)

2.5. Averaging data from multiple sensors 19

flux-data-qaqc Documentation

(continued from previous page)

>>> fig = figure(x_axis_label='date', y_axis_label='Soil heat flux (w/m2)')
>>> Data.add_lines(fig, df, plt_vars, colors, x_name, source, labels=G_cols)
>>> show(fig)

Note, the weighted mean is closer to ‘G_2_1_1’ and ‘G_3_1_1’ as we gave them weights of 10 versus 1 to ‘G_1_1_1’
and ‘G_4_1_1’.

Lastly, the code snippets below run the Energy Balance Ratio closure correction and creating the default plots in order
to view the daily and monthly time series of multiple soil moisture variables. It also shows how to upload the output
plot file into a Jupyter Notebook for viewing.

>>> # in order to correctly view the output in a Jupyter notebook
>>> from bokeh.io import output_notebook
>>> output_notebook()

Within the set of default plots created by the QaQc.plot method will include interactive daily and monthly time
series of multiple 𝐺 and soil moisture variables if they were assigned in the input config file (as in this example), scroll
down to view them.

>>> from fluxdataqaqc import QaQc
>>> q = QaQc(d)
>>> q.correct_data()
>>> # this will NOT save the plot file, use output_type='save'
>>> q.plot(output_type='show')

20 Chapter 2. Configuration Options and Caveats

CHAPTER 3

Tutorial

This tutorial demonstrates the most important features of the flux-data-qaqc Python package for management,
analysis, and visualization of eddy covariance time series data. It is recommended to read the Installation and Config-
uration Options and Caveats tutorials before this one.

A Jupyter Notebook of this tutorial is available here.

Tip: Currently, the software does not include a command line interface therefore to use the software you must use
Python, e.g. make your own scripts or use an interactive shell. However, you will see that common workflows can
be accomplished with a few (5-10) lines of code and you can simply follow the templates given here to make custom
scripts.

3.1 Description of example datasets

The data for this example comes from the “Twitchell Alfalfa” AmeriFlux eddy covariance flux tower site in California.
The site is located in alfalfa fields and exhibits a mild Mediterranean climate with dry and hot summers, for more
information on this site or to download data click here.

3.2 Loading input

The loading and management of input climatic data and metadata from a config.ini file is done using the
fluxdataqaqc.Data object. In a nutshell, a Data object is created from a properly formatted config file (see
Setting up a config file) and has tools for parsing input climate data, averaging input climate time series, access-
ing/managing metadata, flag-based data filtering, and creating interactive visualizations of input data.

There is only one argument to create a Data object, the path to the config.ini file:

21

https://github.com/Open-ET/flux-data-qaqc/blob/master/examples/Basic_usage/Tutorial.ipynb
https://ameriflux.lbl.gov/sites/siteinfo/US-Tw3

flux-data-qaqc Documentation

>>> # imports for code snippets within tutorial
>>> import pandas as pd
>>> from fluxdataqaqc import Data, QaQc, Plot
>>> from bokeh.plotting import figure, show, ColumnDataSource
>>> from bokeh.models.formatters import DatetimeTickFormatter
>>> from bokeh.models import LinearAxis, Range1d
>>> # create a Data object from the config.ini file
>>> config_path = 'US-Tw3_config.ini'
>>> d = Data(config_path)

3.2.1 Attributes of a Data object

Below are some of the useful attributes of the Data object and how they may be used.

The full path to the config.ini file that was used to create the Data instance can be accessed, note that it will return a
system-depenedent pathlib.Path object. E.g. on my Linux machine the path is:

>>> d.config_file
PosixPath('/home/john/flux-data-qaqc/examples/Basic_usage/US-Tw3_config.ini')

On a Windows machine the path will have the appropriate backslashes.

Similarly to access the climate time series file:

>>> d.climate_file
PosixPath('/home/john/flux-data-qaqc/examples/Basic_usage/AMF_US-Tw3_BASE_HH_5-5.

→˓csv')

The Data.config attribute is a configparser.ConfigParser object, it allows you to access metadata and
data in the config file in multiple ways and to modify them. In flux-data-qaqc it is mainly used for accessing
information about the input data.

>>> # get a list of all entries in the METADATA section of the config.ini
>>> d.config.items('METADATA') # access the DATA section the same way

[('climate_file_path', 'AMF_US-Tw3_BASE_HH_5-5.csv'),
('station_latitude', '38.1159'),
('station_longitude', '-121.6467'),
('station_elevation', '-9.0'),
('missing_data_value', '-9999'),
('skiprows', '2'),
('date_parser', '%Y%m%d%H%M'),
('site_id', 'US-Tw3'),
('country', 'USA'),
('doi_contributor_name', 'Dennis Baldocchi'),
('doi_contributor_role', 'Author'),
('doi_contributor_email', 'baldocchi@berkeley.edu'),
('doi_contributor_institution', 'University of California, Berkeley'),
('doi_organization', 'California Department of Water Resources'),
('doi_organization_role', 'Sponsor'),
('flux_measurements_method', 'Eddy Covariance'),
('flux_measurements_variable', 'CO2'),
('flux_measurements_operations', 'Continuous operation'),
('site_name', 'Twitchell Alfalfa'),
('igbp', 'CRO'),
('igbp_comment',
'alfalfa is a fast growing leguminous crop raised for animal feed of low

→˓stature. It is planted in rows and typically reaches 60-70 cm in height prior to
→˓harvest.'),

(continues on next page)

22 Chapter 3. Tutorial

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

flux-data-qaqc Documentation

(continued from previous page)

('land_ownership', 'public'),
('network', 'AmeriFlux'),
('reference_paper',
'Baldocchi, D., Penuelas, J. (2018) The Physics And Ecology Of Mining Carbon

→˓Dioxide From The Atmosphere By Ecosystems, Global Change Biology, 45(), 9275-9287'),
('reference_doi', '10.1111/gcb.14559'),
('reference_usage', 'Reference'),
('research_topic',
'The research approach of the University of California, Berkeley Biometeorology

→˓Laboratory involves the coordinated use of experimental measurements and
→˓theoretical models to understand the physical, biological, and chemical processes
→˓that control trace gas fluxes between the biosphere and atmosphere and to quantify
→˓their temporal and spatial variations. The research objectives of the Mayberry
→˓Wetland, Twitchell Wetland, Sherman Island, Twitchell Island, Twitchell Alfalfa,
→˓and Twitchell Corn sites are as follows: 1) Describe differences in the fluxes of
→˓CO2, CH4, H2O, and energy between different land uses, 2) Understand the mechanisms
→˓controlling these fluxes, 3) Use ecosystem modeling to understand controls on these
→˓mechanisms under different environmental scenarios. These six sites were selected
→˓to capture a wide range of inundated conditions within the Sacramento-San Joaquin
→˓River Delta. The research focuses on the eddy covariance technique to measure CH4,
→˓CO2, H2O, and energy fluxes and works to combine measurements of both net fluxes
→˓and partitioned fluxes in order to achieve a mechanistic understanding of the
→˓ecological controls on current and future carbon flux in the Delta.'),

('terrain', 'Flat'),
('aspect', 'FLAT'),
('wind_direction', 'W'),
('surface_homogeneity', '370.0'),
('site_desc',
"The Twitchell Alfalfa site is an alfalfa field owned by the state of

→˓California and leased to third parties for farming. The tower was installed on May
→˓24, 2013. This site and the surrounding region are part of the San Joaquin -
→˓Sacramento River Delta drained beginning in the 1850's and subsequently used for
→˓agriculture. The field has been alfalfa for X years...., Crop rotation occurs every
→˓5-6 years. The site is harvested by mowing and bailing several times per year.
→˓The field is fallow typically between November and February. The site is irrigated
→˓by periodically-flooded ditches surrounding the field. The site is irrigated by
→˓raising, and subsequently lowering the water table??"),

('site_funding', 'California Department of Water Resources'),
('team_member_name', 'Joe Verfaillie'),
('team_member_role', 'Technician'),
('team_member_email', 'jverfail@berkeley.edu'),
('team_member_institution', 'University of California, Berkeley'),
('url_ameriflux', 'http://ameriflux.lbl.gov/sites/siteinfo/US-Tw3'),
('utc_offset', '-8'),
('mat', '15.6'),
('map', '421.0'),
('land_owner', 'California Department of Water Resources'),
('climate_koeppen', 'Csa'),
('doi', '10.17190/AMF/1246149'),
('doi_citation',
'Dennis Baldocchi (2013-) AmeriFlux US-Tw3 Twitchell Alfalfa, 10.17190/AMF/

→˓1246149'),
('doi_dataproduct', 'AmeriFlux'),
('team_member_address',
'Department of Environmental Science, Policy and Management, 137 Mulford Hall,

→˓345 Hilgard Hall,Berkeley, CA USA 94720-3110'),
('url', 'http://nature.berkeley.edu/biometlab/sites.php?tab=US-Tw3'),

(continues on next page)

3.2. Loading input 23

flux-data-qaqc Documentation

(continued from previous page)

('dom_dist_mgmt', 'Agriculture'),
('site_snow_cover_days', '0.0'),
('state', 'CA'),
('location_date_start', '20130524.0'),
('acknowledgement',
'Biometeorology Lab, University of California, Berkeley, PI: Dennis Baldocchi

→˓')]

A useful method is the configparser.ConfigParser.get which takes the section of the config file and the
“option” and returns the value:

>>> d.config.get(section='METADATA', option='site_name')
'Twitchell Alfalfa'

>>> # section and option are optional keywords
>>> d.config.get('METADATA', 'site_name')

'Twitchell Alfalfa'

Tip: If you are unsure if an entry or option exists in the config file, use the fallback keyword argument

>>> # section and option are optional keywords
>>> d.config.get('METADATA', 'site name', fallback='na')

'na'

Some metadata entries are added as Data attributes for easier access as they are used in multiple ways later, these
include:

• site_id*

• elevation*

• latitude*

• longitude*

• na_val

• qc_threshold

• qc_flag
*mandatory METADATA entries in the config file, see Setting up a config file for further explanation.

View all the columns as found in the header row of the input time series climate file.

>>> d.header
array(['TIMESTAMP_START', 'TIMESTAMP_END', 'CO2', 'H2O', 'CH4', 'FC',

'FCH4', 'FC_SSITC_TEST', 'FCH4_SSITC_TEST', 'G', 'H', 'LE',
'H_SSITC_TEST', 'LE_SSITC_TEST', 'WD', 'WS', 'USTAR', 'ZL', 'TAU',
'MO_LENGTH', 'V_SIGMA', 'W_SIGMA', 'TAU_SSITC_TEST', 'PA', 'RH',
'TA', 'VPD_PI', 'T_SONIC', 'T_SONIC_SIGMA', 'SWC_1_1_1',
'SWC_1_2_1', 'TS_1_1_1', 'TS_1_2_1', 'TS_1_3_1', 'TS_1_4_1',
'TS_1_5_1', 'NETRAD', 'PPFD_DIF', 'PPFD_IN', 'PPFD_OUT', 'SW_IN',
'SW_OUT', 'LW_IN', 'LW_OUT', 'P', 'FC_PI_F', 'RECO_PI_F',
'GPP_PI_F', 'H_PI_F', 'LE_PI_F'], dtype='<U15')

24 Chapter 3. Tutorial

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.get

flux-data-qaqc Documentation

Note: All of the header columns will not necessarily be loaded, only those specified in the config file. Also, no data
other than the header line is loaded into memory when creating a Data object, the time series data is only loaded
when calling Data.df for increased efficiency for some workflows involving only metadata.

3.2.2 Variable names and units

In flux-data-qaqc there are two naming schemes for climate variables, the names as defined by the column
headers in the input time series file and the internal names for some variables and calculated variables created by the
package. We will refer to these two sets as “user-defined” and “internal” names hereforth.

The Data.variables attribute maps the internal to user-defined variable names:

>>> d.variables
{'date': 'TIMESTAMP_START',
'Rn': 'NETRAD',
'G': 'G',
'LE': 'LE_PI_F',
'H': 'H_PI_F',
'sw_in': 'SW_IN',
'sw_out': 'SW_OUT',
'lw_in': 'LW_IN',
'lw_out': 'LW_OUT',
'vpd': 'VPD_PI',
't_avg': 'T_SONIC',
'ws': 'WS',
'theta_1': 'SWC_1_1_1',
'theta_2': 'SWC_1_2_1'}

And, the Data.inv_map maps the internal to user-defined names if they differ, however this is only created once
the data is loaded by calling Data.df.

>>> # a similar dictionary attribute for input units
>>> d.units

{'Rn': 'w/m2',
'G': 'w/m2',
'LE': 'w/m2',
'H': 'w/m2',
'sw_in': 'w/m2',
'sw_out': 'w/m2',
'lw_in': 'w/m2',
'lw_out': 'w/m2',
'vpd': 'hPa',
't_avg': 'C',
'ws': 'm/s',
'theta_1': '(%): Soil water content (volumetric), range 0-100',
'theta_2': '(%): Soil water content (volumetric), range 0-100'}

3.2.3 Accessing input data

The Data.df property gves access to the time series input climate data for columns specified in the config file as
a datetime-indexed pandas.DataFrame object. This object has numerous powerful built in tools for time series
analysis and visualization.

3.2. Loading input 25

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

flux-data-qaqc Documentation

>>> # first 5 datetimes that are not gaps
>>> d.df.dropna().head()

Tip: There are many tutorials on how to use the pandas.DataFrame and its powerful data analysis tools for
multiple purposes online, to get started you may want to visit Panda’s own list of tutorials here.

By default the column names in Data.df are retained from user-defined names unless they were named exactly the
same as an internal name. For example the input ground heat flux column in this dataset is named “G”, therefore it
was renamed as “input_g”

>>> d.df.columns
Index(['input_G', 'WS', 'VPD_PI', 'T_SONIC', 'SWC_1_1_1', 'SWC_1_2_1',

'NETRAD', 'SW_IN', 'SW_OUT', 'LW_IN', 'LW_OUT', 'H_PI_F', 'LE_PI_F',
'theta_mean'],

dtype='object')

>>> # the new name was also updated in Data.variables
>>> d.variables.get('G')

'input_G'

As stated earlier, Data.inv_map maps the user-defined names to internal flux-data-qaqc names only after
loading Data.df:

>>> d.inv_map
{'TIMESTAMP_START': 'date',
'NETRAD': 'Rn',
'input_G': 'G',
'LE_PI_F': 'LE',
'H_PI_F': 'H',
'SW_IN': 'sw_in',
'SW_OUT': 'sw_out',
'LW_IN': 'lw_in',
'LW_OUT': 'lw_out',
'VPD_PI': 'vpd',
'T_SONIC': 't_avg',
'WS': 'ws',
'SWC_1_1_1': 'theta_1',
'SWC_1_2_1': 'theta_2'}

Tip: The Data.inv_map is mainly used to rename the dataframe to internal names, this can be very useful if
you are creating your own custom workflows using the flux-data-qaqc API because it allows you to only know
the internal names of variables therefore they can be hard coded into your workflow and applied to different eddy
covariance datasets. For example, let’s say we wanted to make HTML tables of basic statistics of just the energy
balance components for many datasets (that may have different names for the same variables) and save the file using
the user-defined names:

>>> d = Data('US-Tw3_config.ini')
>>> df = d.df.rename(columns=d.inv_map)
>>> # get some metadata for saving
>>> site_id = d.site_id
>>> vars_we_want = ['H', 'LE', 'Rn', 'G']
>>> # rename variables, calculate basice statistics table and save to HTML
>>> df[vars_we_want].rename(columns=d.variables).describe().to_html('{}.html'.
→˓format(site_id))

(continues on next page)

26 Chapter 3. Tutorial

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/getting_started/tutorials.html#internal-guides

flux-data-qaqc Documentation

(continued from previous page)

Calculating mean for var: THETA from columns: ['SWC_1_1_1', 'SWC_1_2_1']
WARNING: renaming column G to input_G

>>> # which produces the following HTML table with user-defined names:
>>> from IPython.display import HTML
>>> HTML(filename='{}.html'.format(site_id))

Another powerful feature of the Data.df property is that it is datetime-indexed using the input data’s temporal
frequency, view the date index like so:

>>> d.df.index
DatetimeIndex(['2013-01-01 00:00:00', '2013-01-01 00:30:00',

'2013-01-01 01:00:00', '2013-01-01 01:30:00',
'2013-01-01 02:00:00', '2013-01-01 02:30:00',
'2013-01-01 03:00:00', '2013-01-01 03:30:00',
'2013-01-01 04:00:00', '2013-01-01 04:30:00',
...
'2018-06-04 19:00:00', '2018-06-04 19:30:00',
'2018-06-04 20:00:00', '2018-06-04 20:30:00',
'2018-06-04 21:00:00', '2018-06-04 21:30:00',
'2018-06-04 22:00:00', '2018-06-04 22:30:00',
'2018-06-04 23:00:00', '2018-06-04 23:30:00'],

dtype='datetime64[ns]', name='date', length=95088, freq=None)

Datetime-indexed pandas.DataFrame objects have useful features for time series analysis like grouping and cal-
culating statistics by time aggregates. The example below shows how to calculate the day of year mean for energy
balance components, it also demonstrates how to use the add_lines plotting method available to Data, QaQc, and
Plot objects.

>>> # convert to internal names, copy dataframe
>>> df = d.df.rename(columns=d.inv_map)
>>> # day of year mean of input energy balance components
>>> vars_we_want = ['H', 'LE', 'Rn', 'G']
>>> doy_means = df[vars_we_want].groupby(d.df.index.dayofyear).mean()
>>> # create a Bokeh figure
>>> fig = figure(x_axis_label='day of year', y_axis_label='day of year mean (w/m2)')
>>> # arguements needed for creating interactive plots
>>> plt_vars = vars_we_want
>>> colors = ['red', 'blue', 'black', 'green']
>>> x_name = 'date'
>>> source = ColumnDataSource(doy_means)
>>> Plot.add_lines(fig, doy_means, plt_vars, colors, x_name, source, labels=vars_we_
→˓want,
>>> x_axis_type=None)
>>> show(fig)

Note: The x_axis_type=None is a unique argument to Plot.add_lines and Plot.line_plot that in
this case means to not try to force the x-axis format to a datetime representation, default is x_axis_type='date'.

See also:

Some routines occur automatically when creating a Data object, including calcuation of weighted and non-weighted
averages of soil heat flux and soil moisture which is described in Averaging data from multiple sensors.

3.2. Loading input 27

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

flux-data-qaqc Documentation

3.2.4 Modifying input data

A last note on the Data object (same goes for the QaQc object) is that Data.df is a class property, in this case that
means that it can be reassigned with a different pandas.DataFrame. This is critical for manual pre-filtering and
validation of data before proceeding with energy balance closure routines. A simple example is shown here:

>>> # add 5 to air temperature, this would effect ET calculations later
>>> x = d.df
>>> x['T_SONIC'] += 5
>>> d.df = x

A realistic use of the reassignability of the Data.df and QaQc.df properties is shown in manual cleaning of poor
quality data.

See also:

The Data.apply_qc_flags method allows for reading in quality control flags with the input data and filtering
specific data out based on user-defined numeric or character flags. This routine is specific to Data and includes several
attributes that are added to a Data instance, for full explanation and examples see Quality-based data filtering.

3.3 Visualize input data

The Data.plot method create a series of interactive time series plots of input data, potential plots inlcude:

• energy balance components

• radiation components

• multiple soil heat flux measurements

• air temperature

• vapor pressure and vapor pressure deficit

• wind speed

• precipitation

• latent energy

• multiple soil moisture measurements

If any of these variables are not found the plot(s) will not be added.

The most useful interactive features of plots created by flux-data-qaqc are:

• pan/zoom

• hover tolltips on var names, values, date

• linked x-axes on time series plots

• save plot option (can save specific subplot zoomed in)

Here is an example,

>>> d.plot(output_type='notebook', plot_width=700)

The output plot is not shown in the online documentation due to memory constraints.

28 Chapter 3. Tutorial

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://flux-data-qaqc.readthedocs.io/en/latest/closure_explanation.html#step-0-manual-cleaning-of-poor-quality-data
https://flux-data-qaqc.readthedocs.io/en/latest/closure_explanation.html#step-0-manual-cleaning-of-poor-quality-data

flux-data-qaqc Documentation

Hint: The plot methods of Data and QaQc objects have the keyword argument output_type which by default is
set to “save”, the other two options are “notebook” for showing within a Jupyter Notebook and “show” which opens a
temporary file in the default web browser.

If you rather save the plot, and maybe you want 2 columns of plots,

>>> d.plot(ncols=2, plot_width=500)

After saving a plot without specifying the output file path (keyword argument out_file), it will be saved to an
“output” directory where the config file is with the file name based on Data.site_id with the suffix “_input_plots”:

>>> # where the plot file was saved by default
>>> d.plot_file

PosixPath('/home/john/flux-data-qaqc/examples/Basic_usage/output/US-Tw3_input_
→˓plots.html')

The following plot is not shown due to excessive memory usage needed to build online documentation.

>>> # view outplot plots within Jupyter notebook
>>> from IPython.display import HTML
>>> HTML(filename=d.plot_file)

Hint: The QaQc.plot method shown below is similar however it may include added plots with calculated and
corrected variables (if they exist) and will always plot data in daily and monthly temporal frequency because daily
frequency is required before applying flux-data-qaqc energy balance closure corrections.

3.4 Temporal resampling

The QaQc object holds several tools for managing data and eddy covariance data analysis, but one of it’s primary
features is temporal resampling of input data to daily and monthly frequencies. The resampling of time series data to
daily frequency occurs upon the creation of a QaQc instance if the frequency within the preceeding Data object is
not already daily:

>>> # the frequency of the input data is 30 minute
>>> d.df.index[0:5]

DatetimeIndex(['2013-01-01 00:00:00', '2013-01-01 00:30:00',
'2013-01-01 01:00:00', '2013-01-01 01:30:00',
'2013-01-01 02:00:00'],

dtype='datetime64[ns]', name='date', freq=None)

>>> # creating a QaQc instance will automatically convert to daily
>>> q = QaQc(d)

The input data temporal frequency appears to be less than daily.
Data is being resampled to daily temporal frequency.
Filtering days with less then 100.0% or 48/48 sub-daily measurements
Converting vpd from hpa to kpa

>>> # first 5 datetime indices are dates now
>>> q.df.index[0:5]

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

(continues on next page)

3.4. Temporal resampling 29

flux-data-qaqc Documentation

(continued from previous page)

'2013-01-05'],
dtype='datetime64[ns]', name='date', freq=None)

The method used for aggregating different variables, e.g. mean or sum, when resampling to daily or monthly frequency
is defined in the QaQc.agg_dict class attribute:

>>> # these are the internal names as keys and temporal aggregation method as values
>>> QaQc.agg_dict

{'energy': 'mean',
'flux': 'mean',
'flux_corr': 'mean',
'br': 'mean',
'ET': 'sum',
'ET_corr': 'sum',
'ET_gap': 'sum',
'ET_fill': 'sum',
'ET_fill_val': 'sum',
'ET_user_corr': 'sum',
'ebr': 'mean',
'ebr_corr': 'mean',
'ebr_user_corr': 'mean',
'ebr_5day_clim': 'mean',
'gridMET_ETr': 'sum',
'gridMET_prcp': 'sum',
'lw_in': 'mean',
't_avg': 'mean',
'rso': 'mean',
'sw_pot': 'mean',
'sw_in': 'mean',
'vp': 'mean',
'vpd': 'mean',
'ppt': 'sum',
'ws': 'mean',
'Rn': 'mean',
'sw_out': 'mean',
'lw_out': 'mean',
'G': 'mean',
'LE': 'mean',
'LE_corr': 'mean',
'LE_user_corr': 'mean',
'H': 'mean',
'H_corr': 'mean',
'H_user_corr': 'mean'}

Note: There are several calculated variables above that may not look familiar, many are calculated by the energy
balance closure correction routines and described in Closure Methodologies. Also, any other variables (not found in
QaQc.agg_dict that exist in a QaQc.df before accessing QaQc.monthly_df the first time will be averaged in
the monthly time series dataframe (QaQc.monthly_df).

The QaQc constructor tries to infer the temporal frequency of the input time series data, however the method is not
always accurate, to access the inferred initial temporal frequency of the data view the QaQc.temporal_freq
attribute:

>>> q.temporal_freq
'30T'

30 Chapter 3. Tutorial

flux-data-qaqc Documentation

If the inferred input frequency was accurate you will see a Pandas datetime alias, in this case ‘30T’ is thirty minutes.
If the temporal frequency is not automatically detected you should be able to rely on the n_samples_per_day
instance attribute that is manually estimated by the QaQc constructor:

>>> q.n_samples_per_day
48

3.4.1 Filter days with sub-daily gaps

The drop_gaps and daily_frac keyword arguments used when creating a QaQc instance allow you to control
how days with sub-daily measurement gaps will or will not be filtered out when resampling to daily frequency.

Sub-daily gaps in energy balance variables 𝐿𝐸, 𝐻 , 𝑅𝑛, and 𝐺 , and daily ASCE standaridized reference ET inputs,
e.g. hourly 𝑒𝑎 (“vp”), 𝑟𝑠 (“sw_in”), 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, and 𝑤𝑠, can be linearly interpolated automatically before daily
aggregations. Interpolation is performed over gap lengths measured in hours, with options to control the longest
length of gap to interpolate when 𝑅𝑛 ≥ 0 controlled by the QaQc keyword argument max_interp_hours (default
2 hours) and the longest gap to interpolate when 𝑅𝑛 < 0 set by the max_interp_hours_night (default 4
hours).:math:‘

Important: By default the QaQc constructor will first linearly interpolate energy balance and ASCE ref. ET
variables (𝐿𝐸, 𝐻 , 𝑅𝑛, 𝐺, 𝑒𝑎 (“vp”), 𝑟𝑠 (“sw_in”), 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, and 𝑤𝑠) according to the maximum gap lengths
(max_interp_hours and max_interp_hours_night) and then count sub-daily gaps and drop days (set val-
ues to null) for all climate data columns (not QC flag or sub-daily gap count columns) where any of the sub-daily data
are missing because by default drop_gaps=True and daily_frac=1.0. In other words, if you have hourly
input data for(𝐿𝐸 and one hour was missing on a given day, by default that hour will be linearly interpolated be-
fore calculating the daily time series and the daily mean will be calculated after. On the other hand, if other climate
variables had a single hour missing on a given day, e.g. wind direction, this day would be filtered out by the QaQc
constructor. This is important because the daily time series is what is used in all energy balance closure correction and
daily ASCE standardized reference ET algorithms.

The percentage of sub-daily samples to require set by the daily_frac argument and the maximum length of gaps to
linearly interpolate set by max_interp_hours and max_interp_hours_night complement each other and
are used in tandem. For example, if the input data is half-hourly and you only want a maximum of 4 hours to be
interpolated on any given day and gap lengths to interpolate should be no more than 2 hours each then you would pass
the following parameters to the QaQc constructor:

>>> q = QaQc(d, daily_frac=20/24, max_interp_hours=2, max_interp_hours_night=2)
The input data temporal frequency appears to be less than daily.
Data is being resampled to daily temporal frequency.
Linearly interpolating gaps in energy balance components up to 2 hours when Rn <

→˓0 and up to 2 hours when Rn >= 0.
Filtering days with less then 83.33333333333334% or 40/48 sub-daily measurements

In this case we set daily_frac=20/24 because we are only allowing a maximum of 4 hours of total gaps in the day
in other words we are requiring 40 of the 48 half hourly samples to exist before we filter out a day. Remember, because
linear interpolation of gaps is done before counting sub-daily gaps, this could result in retaining days with more than
4 hours of gaps in the original time series of energy balance components. You may also pass the daily_frac
arugment as a decimal fraction, e.g. 0.8333 ≈ 20/24.

To not drop any days and take daily means/sums based on whatever data exists in a given day without any interpolation
of energy balance variables,

3.4. Temporal resampling 31

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

flux-data-qaqc Documentation

>>> q = QaQc(d, drop_gaps=False, max_interp_hours=None)
The input data temporal frequency appears to be less than daily.
Data is being resampled to daily temporal frequency.

Let’s view a comparison of 𝑅𝑛 using different options of filtering days with sub-daily gaps in the working dataset,
because it has several periods of systematic gaps which cause upwards skewing of daily mean 𝑅𝑛 if not filtered
carefully:

>>> # make an empty pandas dataframe for Rn series
>>> Rn_df = pd.DataFrame()
>>> # recreate multiplt QaQc instances using different sub-day gap filters
>>> q = QaQc(d, drop_gaps=False, max_interp_hours=None)
>>> Rn_df['sub_day_gaps'] = q.df.Rn_subday_gaps
>>> Rn_df['no_filter_no_interp'] = q.df.rename(columns=q.inv_map).Rn
>>> q = QaQc(d, drop_gaps=False)
>>> Rn_df['no_filter_with_interp'] = q.df.rename(columns=q.inv_map).Rn
>>> q = QaQc(d, daily_frac=0.5) # filter days with less than 50% data
>>> Rn_df['require_50'] = q.df.rename(columns=q.inv_map).Rn
>>> q = QaQc(d, daily_frac=0.75)
>>> Rn_df['require_75'] = q.df.rename(columns=q.inv_map).Rn
>>> q = QaQc(d, daily_frac=1, max_interp_hours=24, max_interp_hours_night=24)
>>> Rn_df['require_100_with_interp'] = q.df.rename(columns=q.inv_map).Rn
>>> q = QaQc(d, daily_frac=1, max_interp_hours=None)
>>> Rn_df['require_100_no_interp'] = q.df.rename(columns=q.inv_map).Rn
>>> # plot to compare results of day-gap filter
>>> fig = figure(x_axis_label='date', y_axis_label='mean daily net radiation (w/m2),
→˓filtered based on sub-daily gaps')
>>> # arguments needed for creating interactive line plots
>>> colors = ['red', 'darkred','orange', 'blue', 'black', 'tan']
>>> plt_vars = ['no_filter_no_interp', 'no_filter_with_interp', 'require_50',
→˓'require_75', 'require_100_with_interp', 'require_100_no_interp']
>>> labels = ['no filter wout/interp.', 'no filter w/interp.', 'require > 50% w/
→˓interp.', 'require > 75% w/interp.', 'require 100% w/interp.', 'require 100% wout/
→˓interp.']
>>> x_name = 'date'
>>> source = ColumnDataSource(Rn_df)
>>> Plot.add_lines(fig, Rn_df, plt_vars, colors, x_name, source, labels=labels)
>>> # add daily gap counts to secondary y
>>> fig.extra_y_ranges['gap_counts'] = Range1d(start=0, end=48)
>>> fig.add_layout(LinearAxis(y_range_name='gap_counts', axis_label='number of sub-
→˓daily gaps'), 'right')
>>> fig.circle('date', 'sub_day_gaps', legend='n sub-day gaps', y_range_name='gap_
→˓counts',
>>> color='silver', source=source
>>>)
>>> fig.hover[0].tooltips.append(('sub_day_gaps','@{}'.format('sub_day_gaps')))
>>> fig.legend.location = 'top_right'
>>> show(fig)

Try zooming in on the gaps filled by the “no filter wout/interp.” line to compare which days are retained/filtered by
different options, also remove lines by clicking on them in the legend to compare subsets of options.

Tip: For a more fine-grained approach to filtering out days where perhaps multiple 2 hour gaps were filled
use the newly created daily gap count columns: “LE_subday_gaps”, “H_subday_gaps”, “Rn_subday_gaps”, and
“G_subday_gaps”:

32 Chapter 3. Tutorial

flux-data-qaqc Documentation

>>> q = QaQc(d)
>>> df = q.df.rename(columns=q.inv_map)

For example, you could post-filter out days in any given energy balance variable, in this case 𝑅𝑛 where sub-daily gaps
exceed a threshold:

>>> df.loc[(df.Rn_subday_gaps > 4) & (df.Rn.notna()), ['Rn','Rn_subday_gaps
→˓']]

3.4.2 Monthly time series

The QaQc.monthly_df property allows for creating the monthly time series of input anc calculated variables
provided by QaQc.correct_data. It uses the same temporal aggregation methods as the daily time series i.e. from
QaQc.agg_dict. Although there are many similarities there are important differences between QaQc.df and
QaQc.monthly_df other than the obvious: when accessing the QaQc.monthly_df it will automatically run the
default energy balance closure correction routine provided by QaQc.correct_data if it has not yet been run. You
can check if it has been run at anytime by:

>>> q.corrected
False

To show how this works let’s access the monthly data and show the monthly statistics of the “corrected” evapotranspi-
ration (ET_corr):

>>> # first note, ET_corr is not in the dataset yet
>>> 'ET_corr' in q.df.columns

False

Now access the monthly time series,

>>> q.monthly_df;
>>> 'ET_corr' in q.df.columns

True

By calling the monthly dataframe, the energy balance closure was applied automatically

>>> q.monthly_df.ET_corr.describe()
count 61.000000
mean 87.858135
std 49.938287
min 11.370062
25% 41.418994
50% 84.383190
75% 127.500125
max 192.033481
Name: ET_corr, dtype: float64

>>> q.corrected
True

Note: The QaQc.monthly_df also filters out months with less than 30% of days of the month missing by default.
To calculate monthly time series with other threshold fractions of days required use the util.monthly_resample

3.4. Temporal resampling 33

flux-data-qaqc Documentation

function and adjust the keyword argument thresh which is the fraction (0-1) of days of the month required to not
be gaps otherwise the month’s value will be forced to null, e.g. if you wanted to caclulate the monthly mean air
temperature requiring 30 and 90 percent of the days in the month to not be gaps:

>>> from fluxdataqaqc.util import monthly_resample
>>> # select just t_avg for example
>>> cols = ['t_avg']
>>> df = q.df.rename(columns=q.inv_map)
>>> # create temporary df with different monthly resample results
>>> tmp_df = monthly_resample(df, cols, 'mean', thresh=0.9).rename(
>>> columns={'t_avg': 'thresh_90'}
>>>)
>>> # join temp dataframe with monthly resample results using different thresh
>>> monthly_gap_comp = tmp_df.join(monthly_resample(df, cols, 'mean', thresh=0.3).
→˓rename(
>>> columns={'t_avg': 'thresh_30'})
>>>)
>>> # plot to compare results of day-gap filter
>>> fig = figure(x_axis_label='date', y_axis_label='monthy mean air temperature (C),
→˓filtered based on daily gaps')
>>> # arguments needed for creating interactive line plots
>>> x = 'date'
>>> source = ColumnDataSource(monthly_gap_comp)
>>> # this example also shows how to use other Bokeh plot arguments
>>> Plot.line_plot(fig,'date','thresh_30',source,'red',label='require > 30%', line_
→˓alpha=0.5)
>>> Plot.line_plot(fig,'date','thresh_90',source,'black',label='require > 90%',line_
→˓dash='dotted', line_width=2)
>>> fig.legend.location = 'top_right'
>>> show(fig)

3.5 Energy balance corrections

flux-data-qaqc provides routines that adjust surface energy balance fluxes to improve energy balance closure
of eddy covariance flux station data. These routines ultimately result in a corrected daily and monthly time series of
latent energy, sensible heat, and evapotranspiration with the option to gap-fill days in corrected ET with ET calculated
from gridMET reference ET and fraction of reference ET.

There are two methods currently implemented:

• Energy Balance Ratio method (default), modified from the FLUXNET method

• Bowen Ratio approach (forces closure)

• Multiple least squares regression - user defines LHS and RHS from 𝐿𝐸, 𝐻 , 𝑅𝑛, and 𝐺,

Detailed descriptions of methods including daily ET gap-filling methods can be found in the online documentation
Closure Methodologies page. A few important notes on the API of these methods and other hydro-climatic statistical
variables that are calculated are shown below.

The QaQc.correct_data method is used to run energy balance closure corrections. Here are a few tips on using
them,

>>> # note above the monthly_df automatically applied the 'ebr' Energy Balance Ratio
→˓correction
>>> q.corr_meth

(continues on next page)

34 Chapter 3. Tutorial

https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/

flux-data-qaqc Documentation

(continued from previous page)

'ebr'

>>> # potential correction options
>>> q.corr_methods

('ebr', 'br', 'lin_regress')

>>> # to specify the Bowen Raito method:
>>> q.correct_data(meth='br')

>>> # the most recently used correction method is now shown
>>> q.corr_meth

'br'

Tip: After applying any energy balance closure correction routine all previous corrected variables will be overwritten
or dropped in QaQc.df, QaQc.monthly_df, and QaQc.variables, therefore to make a comparison of differ-
ent methods on the same data make a copy of the df or monthly_df properties before running the next correction,
e.g.

>>> # make copies of daily results of different correction options
>>> q.correct_data(meth='ebr')
>>> ebr_gapfilled = q.df
>>> q.correct_data(meth='ebr', etr_gap_fill=False)
>>> ebr_notgapfilled = q.df
>>> q.correct_data(meth='br')
>>> br_gapfilled = q.df
>>> q.correct_data(meth='br', etr_gap_fill=False)
>>> br_notgapfilled = q.df

3.5.1 ET gap-filling

A few notes on the option that uses reference ET and fraction of daily reference ET to fill in large gaps in corrected
ET, i.e. the keyword argument QaQc.correct_data(etr_gap_fill = True).

• The nearest gridMET cell’s time series data for precipitation and alfalfa reference ET is attempted to be down-
loaded if it is not found in the gridmet_file_path entry of the config.ini file.

• If the path to a gridMET file is not found it is re-downloaded, the config file will be updated with the new path
and resaved.

• Only the overlapping time period that matches the eddy covariance time series data is attempted to be down-
loaded, i.e. the period in QaQc.df.index.

• When a gridMET file is downloaded it will always be saved in a subdirectory where the config file is located
called “gridMET_data” and named using the QaQc.site_id and gridMET cell centroid latitude and longi-
tude.

• Corrected latent energy (𝐿𝐸𝑐𝑜𝑟𝑟) gaps are also backwards filled from gap-filled ET.

Caution: gridMET only exists within the contiguous United States and from 1979 to present, therefore if your
station lies outside of this region or you are analyzing eddy flux data recorded before 1979 this option will not be
ususable and you should always run corrections with etr_gap_fill=False to avoid potential errors.

3.5. Energy balance corrections 35

http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html

flux-data-qaqc Documentation

The Bowen Ratio correction method will produce the ‘br’ variable which is the Bowen Ratio.

3.6 Other calculations

By default, QaQc.correct_data also calculates ET from input latent energy (LE) and air temperature, corrected
ET from corrected LE and air temperature, potential clear sky radiation (ASCE formulation), and the Data object
attempts to calculate vapor pressure deficit from vapor pressure and air temperature or vapor pressure from vapor
pressure deficit and air temperature if they exist at hourly or shorter temporal frequency.

3.6.1 Evapotranspiration

The evapotranspiration (ET) calculations are described in Steps 7 and 8 correct turbulent fluxes, EBR, and ET of the
Energy Balance Ratio correction explanation.

3.6.2 ASCE clear sky radiation

Daily ASCE potential clear sky radiation (𝑅𝑠𝑜) is calculated using equation 19 in the “ASCE Standardized Reference
Evapotranspiration Equation” final report by the Task Committee on Standardization of Reference Evapotranspiration
Environmental and Water Resources Institute of the American Society of Civil Engineers January, 2005 here. This
calculation is a simple method based primarily on elevation and latitude which results in a theoretical envelope of 𝑅𝑠𝑜

as a function of the day of year,

𝑅𝑠𝑜 =
(︀
5 + 2× 10−5𝑧

)︀
𝑅𝑎

where 𝑧 is elevation in meters and 𝑅𝑎 is daily extraterrestrial radiation (radiation with in the absence of an atmosphere),
which itself is a well-behaved function of solar declination, the day of the year and the solar constant (see equations
21-29 in the ASCE report).

3.6.3 Vapor pressure/deficit

The Data object will attempt to calculate vapor pressure or vapor pressure deficit if one exists but not the other and
average air temperature time series also exists with the input data at hourly or shorter temporal frequency. The Magnus
equation (eqn. 37 in the ASCE report) states that the saturation vapor pressure (𝑒𝑠) in kPa relates to air temperature,

𝑒𝑠 = 0.6108𝑒(
17.27·𝑇

(𝑇+237.3))

where 𝑇 is average hourly air temperature in degrees celcius. Vapor pressure deficit (𝑣𝑝𝑑) is,

𝑣𝑝𝑑 = 𝑒𝑠− 𝑒𝑎,

where 𝑒𝑎 is actual vapor pressure in kPa. Note, The equations above are defined for hourly measurements however
they are used for hourly or shorter mean variables (𝑇 , 𝑒𝑎, or 𝑣𝑝𝑑) within flux-data-qaqc and then converted to
daily means, if they are not present in the input data at hourly or shorter frequencies then they are not calculated.

These equations can be rearanged to solve for either 𝑒𝑠 or 𝑣𝑝𝑑 given the other variable and air temperature. For
example, if given 𝑇 and 𝑣𝑝𝑑, then to get actual vapor pressure

𝑒𝑠 = 0.6108𝑒(
17.27·𝑇

(𝑇+237.3))

𝑒𝑎 = 𝑒𝑠− 𝑣𝑝𝑑.

36 Chapter 3. Tutorial

https://www.mesonet.org/images/site/ASCE_Evapotranspiration_Formula.pdf
https://www.mesonet.org/images/site/ASCE_Evapotranspiration_Formula.pdf

flux-data-qaqc Documentation

In flux-data-qaqc actual vapor pressure is named “vp” not “ea”. Also, during these calculations, if relative
humidity is not found in the input dataset then it will subsequently be estimated as

𝑟ℎ = 100× 𝑒𝑎

𝑒𝑠
.

Hint: The same calculations are available at the daily timestep but are not automatically applied as the hourly or
higher temporal frequency calculation is preffered. To apply the estimates of vapor pressure or vapor pressure deficit,
and saturation vapor pressure, and relative humidity with daily data one must call the QaQc._calc_vpd_from_vp
method from a QaQc instance.

3.6.4 Calculated variable reference

Although variables created by energy balance closure corrections are described in Closure Methodologies and others
are below, here is a reference list of all possibly calculated variables created by flux-data-qaqc:

Variable Description
rso potential clear sky radiation (ASCE formulation)
flux input LE + H
energy input Rn - G
ebr_5day_clim 5 day climatology of the filtered Energy Balance Ratio
LE_corr corrected latent energy
ebc_cf energy balance closure correction factor (inverse of ebr_corr)
ebr_corr corrected energy balance ratio
flux_corr LE_corr + H_corr
ebr input energy balance ratio
br bowen ratio
H_corr corrected sensible heat
ET ET calculated from input LE and average air temperature
ET_corr ET calculated from LE_corr and avg. air temp.
gridMET_ETr gridMET alfalfa reference ET (nearest cell)
gridMET_prcp gridMET precipitation
ETrF fraction of reference ET for ET_corr, i.e. ET_corr / gridMET_ETr
ETrF_filtered filtered ETrF
ET_fill gridMET_ETr * ETrF_filtered (fills gaps in ET_corr)
ET_gap True on gap days in ET_corr, False otherwise
ET_fill_val value of ET_fill on gap days

3.7 A note on units

Upon creation of a QaQc object, variables are checked for valid input units and converted to required units needed
for internal calculations when running QaQc.correct_data and for certain default plots (see below). For a list of
valid input units for different variables refer to the QaQc.allowable_units attribute:

>>> q.allowable_units
{'LE': ['w/m2'],
'H': ['w/m2'],
'Rn': ['w/m2'],
'G': ['w/m2'],

(continues on next page)

3.7. A note on units 37

flux-data-qaqc Documentation

(continued from previous page)

'lw_in': ['w/m2'],
'lw_out': ['w/m2'],
'sw_in': ['w/m2'],
'sw_out': ['w/m2'],
'ppt': ['mm', 'in'],
'vp': ['kpa', 'hpa'],
'vpd': ['kpa', 'hpa'],
't_avg': ['c', 'f']}

For each variable above, if given one of the units allowable the units will automatically be converted to the required
units.

To know which variables are required to be in particular units view Qc.required_units:

>>> q.required_units
{'LE': 'w/m2',
'H': 'w/m2',
'Rn': 'w/m2',
'G': 'w/m2',
'lw_in': 'w/m2',
'lw_out': 'w/m2',
'sw_in': 'w/m2',
'sw_out': 'w/m2',
'ppt': 'mm',
'vp': 'kpa',
'vpd': 'kpa',
't_avg': 'c'}

Note: The list of allowable units is a work in progress, if your input units are not available consider raising an issue
on GitHub or providing the conversion directly with a pull request. Automatic unit conversions are handled within the
util.Convert class using the util.Convert.convert class method.

3.8 Save resampled and corrected data

The QaQc.write method conveniently writes daily and monthly time series of input and calculated variables to
comma separated value (CSV) files. If the QaQc.correct_data method has not yet been run it will be and the
monthly time series will also be created using the default parameters for the correction routine (Energy Balance Ratio
method with ETr-based gap filling).

The default output directory for time series files can be accessed/changed by the out_dir attribute, if not changed
it will be located in the same directory of the config.ini file. The daily and monthly time series file names will begin
with the QaQc.site_id followed by “daily_data” or “monthly_data” resepctively. For example,

>>> # new QaQc instance
>>> q = QaQc(d)
>>> # a platform dependent pathlib.Path object
>>> q.out_dir

PosixPath('/home/john/flux-data-qaqc/examples/Basic_usage/output')

The line below shows that no output files have been written to QaQc.out_dir yet,

38 Chapter 3. Tutorial

https://github.com/Open-ET/flux-data-qaqc/issues

flux-data-qaqc Documentation

>>> # print files in output directory that begin with the site_id
>>> [f.name for f in q.out_dir.glob('{}*'.format(q.site_id))]

['US-Tw3_input_plots.html']

>>> q.corrected
False

>>> # writing files also ran corrections since they were not yet run
>>> q.write()
>>> q.corrected

True

Now the respective daily and monthly time series have been written to QaQc.out_dir,

>>> [f.name for f in q.out_dir.glob('{}*'.format(q.site_id))]
['US-Tw3_daily_data.csv', 'US-Tw3_monthly_data.csv', 'US-Tw3_input_plots.html']

Hint: You can overwrite the default name of the output directory to save the daily and monthly time series using the
out_dir keyword argument to QaQc.write, this option keeps the location within the directory of the config file
but just changes the name, whereas to change the entire output directory path adjust the QaQc.out_dir attribute
directly. Also, the naming scheme of output files created will use user-defined names for all input variables.

3.9 Visualize resampled and corrected data

Similar to the Data.plot, the QaQc.plot method creates a series of default time series and scatter plots of input
and in this case calculated variables. The temporal frequency of plots from QaQc.plot will always be daily and
monthly and additional plots are created for validation of energy balance closure corrections, otherwise the same
options such as number of subplot columns, super title, subplot dimensions, output type, output file path, etc. are
available. Similar to QaQc.write and QaQc.monthly_df, if the data has not yet been corrected the plot
method will correct it using the default parameters before creating the plots.

Here is an example of the default daily and monthly time series plots produced after running the Energy Balance Ratio
closure correction:

>>> q = QaQc(d)
>>> q.plot(output_type='notebook', plot_width=700)

3.9. Visualize resampled and corrected data 39

flux-data-qaqc Documentation

40 Chapter 3. Tutorial

CHAPTER 4

Closure Methodologies

flux-data-qaqc currently provides two routines which ultimately adjust turbulent fluxes in order to improve
energy balance closure of eddy covariance tower data, the Energy Balance Ratio and the Bowen Ratio method.

Closure methods are assigned as keyword arguments to the QaQc.correct_datamethod, and for a list of provided
closure options see QaQc.corr_methods. For example, if you would like to run the Bowen Ratio correction
routine assuming you have succesfully created a QaQc object,

q is a QaQc instance
q.correct_data(meth='br')

The other keyword argument for QaQc.correct_data allows for gap filling corrected evapotranspiration (𝐸𝑇)
which is calculated from corrected latent energy (𝐿𝐸). By default the gap filling option is set to True, more details on
this below in Step 9, optionally gap fill corrected ET using gridMET reference ET and reference ET fraction.

Tip: All interactive visualizations in this page were created using Plot.line_plot, Plot.add_lines, and
Plot.scatter_plotwhich automatically handle issues with utilizing the mouse hover tooltips and other bokeh.
plotting.figure.Figure features.

4.1 Data description

The data for this example comes from the “Twitchell Alfalfa” AmeriFlux eddy covariance flux tower site in California.
The site is located in alfalfa fields and exhibits a mild Mediterranean climate with dry and hot summers, for more
information on this site or to download data click here.

4.2 Energy Balance Ratio method

The Energy Balance Ratio method (default) is modified from the FLUXNET methodology (step 3 daily heat process-
ing). The method involves filtering out of extreme values of the daily Energy Balance Ratio time series, smoothing,

41

https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://ameriflux.lbl.gov/sites/siteinfo/US-Tw3
https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/

flux-data-qaqc Documentation

and gap filling. Then the inverse of the filtered and smoothed time series is used as a series of correction factors for
the initial time series of latent energy (𝐿𝐸) and sensible heat (𝐻) flux time series.

4.2.1 All steps, abbreviated

Below is a step-by-step description of the Energy Balance Ratio correction routine used by flux-data-qaqc. More
details and visual demonstration of steps are shown below.

Step 0 (optional): optionally filter out poor quality data first if quality control (QC) values or flags are provided with
the dataset or other means. For example, FLUXNET data includes QC values for 𝐻 and 𝐿𝐸, e.g. H_F_MDS_QC and
LE_F_MDS_QC are QC values for gap filled 𝐻 and 𝐿𝐸. This allows for manual pre-QaQc of data.

Step 1: calculate the Energy Balance Ratio (EBR = 𝐻+𝐿𝐸
𝑅𝑛˘𝐺) daily time series from raw data.

Step 2: filter EBR values that are outside 1.5 times the interquartile range.

Step 3: for each day in the daily time series of filtered EBR, a sliding window of +/- 7 days (15 days) is used to select
up to 15 values.

Step 4: for each day take a percentile (default 50) of the 15 EBR values. Check if the inverse of the EBR value is
> |2| or if the the inverse of the ratio multiplied by the measured 𝐿𝐸 would result in a flux greater than 850 or less
than -100 𝑤/𝑚2, if so leave a gap for filling later.

Step 5: if less than +/- 5 days exist in the sliding 15 day window, use the mean EBR for all days in a +/- 5 day (11
day) sliding window. Apply same criteria for an extreme EBR value as in step 4.

Step 6: if no EBR data exist in the +/- 5 sliding window to average, fill remaining gaps of EBR with the mean from a
+/- 5 day sliding window over the day of year mean for all years on record, i.e. 5 day climatology. Calculate the 5 day
climatology from the filtered and smoothed EBR as produced from step 5. Apply same criteria for an extreme EBR
value as in steps 4 and 5.

Step 7: use the filtered EBR time series from previous steps to correct 𝐿𝐸 and 𝐻 by multiplying by the energy balance
closure correction factor 𝐸𝐵𝐶𝐶𝐹 = 1

𝐸𝐵𝑅 , where EBR has been filtered by the previous steps. Use the corrected 𝐿𝐸
and 𝐻 to calculate the corrected EBR.

Step 8: calculate corrected 𝐸𝑇 from corrected 𝐿𝐸 using average air temperature to adjust the latent heat of vaporiza-
tion.

Step 9 (optional): if desired, fill remaining gaps in the corrected 𝐸𝑇 time series with 𝐸𝑇 that is calculated by
gridMET reference 𝐸𝑇 (𝐸𝑇𝑟 or 𝐸𝑇𝑜) multiplied by the filtered and smoothed fraction of reference ET (𝐸𝑇𝑟𝐹 or
𝐸𝑇𝑜𝐹).

4.2.2 Step 0, manual cleaning of poor quality data

Below we can see that the daily time series of net radiation (𝑅𝑛) has some periods of poor quality data. This is
a common issue due, e.g. to instrumentation problems, that cannot always be avoided. In this case the sensor did
not record values at night (or they were not provided with the data) when 𝑅𝑛 values are lower for several days (e.g.
around 8/26/2014) which resulted in overestimates of daily mean 𝑅𝑛 during these periods. Although these days can
automatically be filtered out by the QaQc class, the example below shows a way of manually filtering them because in
other cases outliers in the daily data may not be caused by resampling of sub-daily data with systematic measurement
gaps. The main point is that manual inspection and potentially pre-filtering of poor quality data before proceeding
with energy balance closure corrections is often necessary.

There are several ways to conduct manual pre-filtering of poor quality meterological time series data, to filter data
based on input quality flags or numeric quality values see Quality-based data filtering.

flux-data-qaqc also allows for filtering of poor quality data on the fly as shown in this example. In other words,
we simply filter out the periods we think have bad data for 𝑅𝑛 within Python before running the closure correction.

42 Chapter 4. Closure Methodologies

flux-data-qaqc Documentation

After manually determing the date periods with poor quality 𝑅𝑛, here is how they were filtered oiut before running
the correction:

>>> import pandas as pd
>>> import numpy as np
>>> from fluxdataqaqc import Data, QaQc
>>> d = Data('Path/to/config.ini')
>>> # days with sub daily gaps can be filtered out automatically here,
>>> # see "Tip" below the following plot
>>> q = QaQc(d, drop_gaps=False)
>>> # rename dataframe columns for ease of variable access, adjust
>>> df = q.df.rename(columns=q.inv_map)

Here were the dates chosen and one way to filter them,

>>> # make a QC flag column for Rn
>>> df['Rn_qc'] = 'good'
>>> df.loc[pd.date_range('2/10/2014','2/10/2014'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('8/25/2014','9/18/2014'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('10/21/2015','10/26/2015'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('10/28/2015','11/1/2015'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('7/23/2016','7/23/2016'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('9/22/2016','9/22/2016'), 'Rn_qc'] = 'bad'
>>> df.loc[pd.date_range('3/3/2017','3/3/2017'), 'Rn_qc'] = 'bad'
>>> # filter (make null) based on our QC flag column for Rn
>>> df.loc[df.Rn_qc == 'bad', 'Rn'] = np.nan
>>> # reassign to use pre-filtered data for corrections
>>> q.df = df

The resulting energy balance component plot with 𝑅𝑛 filtered:

Tip: In this case, the issues with 𝑅𝑛 were caused by resampling 30 minute data with systematic night-time gaps.
These sort of issues can be automatically handled when creating a QaQc object; the keyword arguments drop_gaps
and daily_frac to the QaQc class are used to automatically filter out days with measurement gaps of varying size,
i.e.,

>>> d = Data('path/to/config.ini')
>>> q = QaQc(d, drop_gaps=True, daily_frac=0.8)
>>> q.correct_data()

This would produce very similar energy balance closure results as the manual filter above. Another more fine-grained
option would have been to flag the days with gaps in the sub-daily input time series that you would like to filter by
Data.apply_qc_flags.

Note: The remaining step-by-step explanation in this page uses the pre-filtered input time series, however results of
the energy balance closure correction without pre-filtering outliers of 𝑅𝑛 are also shown in plots for the final steps (8
and 9) for comparison. If you now ran:

>>> q.df = df
>>> q.correct_data()
>>> q.plot(output_type='show')

This will directly produce the same output of step 9 using the pre-filtered data.

4.2. Energy Balance Ratio method 43

flux-data-qaqc Documentation

4.2.3 Steps 1 and 2, filtering outliers of EBR

Calculate daily EBR = 𝐻+𝐿𝐸
𝑅𝑛−𝐺 time series and filter out extreme values that are outside 1.5 the interquartile range.

Note, in flux-data-qaqc this is named as “ebr”.

4.2.4 Steps 3, 4, and 5, further filtering of EBR using moving window statistics

Filter the EBR time series using statistics performed over multiple moving windows. Specifically, take the median
EBR from a +/- 7 day moving window, if less than 11 days exist in this window take the mean from a +/- 5 day moving
window. In both of these cases check the resulting value before retaining based on the following criteria:

• the inverse of the EBR value must be > |2|

• the the inverse of the ratio multiplied by the measured 𝐿𝐸 should result in a flux less than 850 and greater than
-100 𝑤/𝑚2

If either of these criteria are not met leave a gap for the day for filling in later steps.

4.2.5 Step 6, calculate the 5 day climatology of EBR

Compute the 5 day climatology of daily EBR (as adjusted from previous steps) to fill in remaining gaps of 11 or more
days. Specifically, calculate the the day of year mean of the EBR for all years in record and then extract the day of
year mean using a moving +/- 5 day (11 day) moving window. The resulting value is also checked against the same
criteria described in steps 3-5:

• the inverse of the EBR value must be > |2|

• the the inverse of the ratio multiplied by the measured 𝐿𝐸 should result in a flux less than 850 and greater than
-100 𝑤/𝑚2

Note, this step is only used for remaining gaps which should be larger than 11 days in the EBR time series following
step 5. This example has a few time periods that were filled with the 5 day climatology of EBR which can be seen as
the thin blue line in the plot below.

flux-data-qaqc also keeps a record of the 5 day climatology of the Energy Balance Ratio as calculated at this
step (shown below), it is named by flux-data-qaqc as ebr_5day_clim.

4.2.6 Steps 7 and 8 correct turbulent fluxes, EBR, and ET

Calculate corrected 𝐿𝐸 and 𝐻 by multiplying by 1
𝐸𝐵𝑅 where 𝐸𝐵𝑅 is the filtered EBR time series from previous

steps:

𝐿𝐸𝑐𝑜𝑟𝑟 = 𝐿𝐸 × 1

𝐸𝐵𝑅

and

𝐻𝑐𝑜𝑟𝑟 = 𝐻 × 1

𝐸𝐵𝑅
.

Use corrected LE and H to calculate the corrected EBR,

𝐸𝐵𝑅𝑐𝑜𝑟𝑟 =
𝐻𝑐𝑜𝑟𝑟 + 𝐿𝐸𝑐𝑜𝑟𝑟

𝑅𝑛−𝐺
.

44 Chapter 4. Closure Methodologies

flux-data-qaqc Documentation

Calculate ET from LE using average air temperature to adjust the latent heat of vaporization following the method of
Harrison, L.P. 1963,

𝐸𝑇𝑚𝑚·𝑑𝑎𝑦−1 = 86400𝑠𝑒𝑐·𝑑𝑎𝑦−1 × 𝐿𝐸𝑤·𝑚−2

2501000𝑀𝐽·𝑘𝑔−1 − (2361 · 𝑇𝐶)
,

where evapotransipiration (𝐸𝑇) in 𝑚𝑚 · 𝑑𝑎𝑦−1, 𝐿𝐸 is latent energy flux in 𝑤 · 𝑚−2, and 𝑇 is air temperature in
degrees celcius. The same approach is used to calculate corrected 𝐸𝑇 (𝐸𝑇𝑐𝑜𝑟𝑟) using 𝐿𝐸𝑐𝑜𝑟𝑟.

The plot below shows the time series of the initial and corrected ET (𝐸𝑇 and 𝐸𝑇𝑐𝑜𝑟𝑟).

There were not significant gaps in the energy balance components for this dataset and therefore step 9 was not used,
although it is still demonstrated with an artificial gap in the next step.

The following plot shows the energy balance closure of the initial and corrected data after applying the steps above,
including the manual pre-filtering of 𝑅𝑛,

Notice the mean daily corrected energy balance ratio (slope of corrected) is 1 or near perfect closure. However, the
same plot below shows the results if we skipped the manual pre-filtering of outlier 𝑅𝑛 values. In this case the resulting
corrected mean closure is only 0.93:

Tip: These and other interactive visualizations of energy balance closure results are provided by default via the
QaQc.plot method.

In flux-data-qaqc new variable names from these steps are: LE_corr, H_corr, ebr, ebr_corr, ebc_cf, ET, ET_corr,
ebr_corr, and ebr_5day_clim. The inverse of the corrected EBR (filtered from previous steps) is named ebc_cf which
is short for energy balance closure correction factor as described by the FLUXNET methodology (step 3 daily heat
processing).

4.2.7 Step 9, optionally gap fill corrected ET using gridMET reference ET and refer-
ence ET fraction

This is done by downloading 𝐸𝑇𝑟 or 𝐸𝑇𝑜 (default is 𝐸𝑇𝑟) for the overlapping gridMET cell (site must be in CONUS)
and then calculating,

𝐸𝑇𝑓𝑖𝑙𝑙 = 𝐸𝑇𝑟𝐹 × 𝐸𝑇𝑟,

where

𝐸𝑇𝑟𝐹 =
𝐸𝑇𝑐𝑜𝑟𝑟

𝐸𝑇𝑟

𝐸𝑇𝑐𝑜𝑟𝑟 is the corrected ET produced by step 8 and 𝐸𝑇𝑟𝐹 is the fraction of reference ET. 𝐸𝑇𝑟𝐹 if first filtered to
remove outliers outside of 1.5 times the interquartile range, it is then smoothed with a 7 day moving average (minimum
of 2 days must exist in window) and lastly it is linearly interpolated to fill any remaining gaps.

The same gap filling procedure can easily be done using gridMET grass reference ET (𝐸𝑇𝑜) as opposed to alfalfa
reference ET (𝐸𝑇𝑟).

Tip: The filtered and raw versions of 𝐸𝑇𝑟𝐹 /𝐸𝑇𝑜𝐹 , gridMET 𝐸𝑇𝑟, gridMET 𝐸𝑇𝑜, gap days, and monthly total
number of gap filled days are tracked for post-processing and visualized by the QaQc.plot and QaQc.write
methods.

Since the data used in this example does not have gaps, for illustration we have created the following large gap in the
measured energy balance components from May through August, 2014:

4.2. Energy Balance Ratio method 45

https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/

flux-data-qaqc Documentation

The resulting time series of 𝐸𝑇𝑐𝑜𝑟𝑟 using the optional gap filling method described is shown below.

Note, the gap filled values of 𝐸𝑇 (green line) do not accurately catch the harvesting cycles of alfalfa however the
𝐸𝑇𝑐𝑜𝑟𝑟 values (blue line) do, this is because the gap filled values are based from gridMET reference ET which is not
locally representative. If this is hard to see, try using the box zoom tool on the right of the plot to zoom in on the
gap-filled period.

This ET gap-filling step is used by default when running flux-data-qaqc energy balance closure correction
routines, to disable it set the etr_gap_fill argument of QaQc.correct_data to False, e.g.

q is a QaQc instance
q.correct_data(meth='ebr', etr_gap_fill=False)

In flux-data-qaqc new variable names from this step are: ETrF, ETrF_filtered, gridMET_ETr, ET_gap, ET_fill,
and ET_fill_val. The difference between ET_fill and ET_fill_val is that the latter is masked (null) on days that the fill
value was not used to fill gaps in 𝐸𝑇𝑐𝑜𝑟𝑟. Also, ET_gap is a daily series of True and False values indicating which
days (from step 8) of 𝐸𝑇𝑐𝑜𝑟𝑟 were gaps that were subsequently filled.

Note: When using the 𝐸𝑇𝑟-based gap-filling option, any gap filled days will also be used to fill in gaps of 𝐿𝐸𝑐𝑜𝑟𝑟,
therefore the mean closure as found in the daily and monthly closure scatter plot outputs (from QaQc.plot) will be
updated to reflect the influence of the gap-filled days.

4.3 Bowen Ratio method

The Bowen Ratio energy balance closure correction method implemented here follows the typical approach where the
corrected latent energy (𝐿𝐸) and sensible heat (𝐻) fluxes are adjusted the following way

𝐿𝐸𝑐𝑜𝑟𝑟 =
(𝑅𝑛−𝐺)

(1 + 𝛽)
,

and

𝐻𝑐𝑜𝑟𝑟 = 𝐿𝐸𝑐𝑜𝑟𝑟 × 𝛽

where 𝛽 is the Bowen Ratio, the ratio of sensible heat flux to latent energy flux,

𝛽 =
𝐻

𝐿𝐸
.

This routine forces energy balance closure for each day in the time series.

Here is the resulting 𝐸𝑇𝑐𝑜𝑟𝑟 time series using the pre-filtered (𝑅𝑛) energy balance time series and the Bowen Ratio
method:

And here is the energy balance closure scatter plot which shows the forced closure of the method:

New variables produced by flux-data-qaqc by this method include: br (Bowen Ratio), ebr, ebr_corr, LE_corr,
H_corr, ET, ET_corr, energy, flux, and flux_corr.

46 Chapter 4. Closure Methodologies

CHAPTER 5

API Reference

This page documents objects and functions provided by flux-data-qaqc.

5.1 Data

class fluxdataqaqc.Data(config)
Bases: fluxdataqaqc.plot.Plot, fluxdataqaqc.util.Convert

An object for interfacing flux-data-qaqc with input metadata (config) and time series input, it provides
methods and attributes for parsing, temporal analysis, visualization, and filtering data.

A Data object is initialized from a config file (see Setting up a config file) with metadata for an eddy covariance
tower or other dataset containing time series meterological data. It serves as a starting point in the Python API
of the energy balance closure analysis and data validation routines that are provided by flux-data-qaqc.

Manual pre-filtering of data based on user-defined quality is aided with the Data.apply_qc_flagsmethod.
Weighted or non-weighted means of variables with multiple sensors/recordings is performed upon initialization
if these options are declared in the config file. The Data class also includes the Data.df property which
returns the time series data in the form of a pandas.DataFrame object for custom workflows. Data inherits
line and scatter plot methods from Plot which allows for the creation of interactive visualizations of input time
series data.

climate_file
Absolute path to climate input file.

Type pathlib.Path

config
Config parser instance created from the data within the config.ini file.

Type configparser.ConfigParser

config_file
Absolute path to config.ini file used for initialization of Data instance.

Type pathlib.Path

47

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/pathlib.html#pathlib.Path

flux-data-qaqc Documentation

header
Header as found in input climate file.

Type numpy.ndarray or pandas.DataFrame.index

elevation
Site elevation in meters as set in config.ini.

Type float

inv_map
Dictionary with input climate file names as keys and internal names as values. May only include pairs
when they differ.

Type dict

latitude
Site latitude in decimal degrees, set in config.

Type float

longitude
Site longitude in decimal degrees, set in config.

Type float

out_dir
Default directory to save output of QaQc.write or QaQc.plot methods.

Type pathlib.Path

plot_file
path to plot file once it is created/saved by Data.plot.

Type pathlib.Path or None

site_id
Site ID as found in site_id config.ini entry.

Type str

soil_var_weight_pairs
Dictionary with names and weights for weighted averaging of soil heat flux or soil moisture variables.

Type dict

qc_var_pairs
Dictionary with variable names as keys and QC value columns (numeric of characters) as values.

Type dict

units
Dictionary with internal variable names as keys and units as found in config as values.

Type dict

variables
Dictionary with internal names for variables as keys and names as found in the input data as values.

Type dict

variable_names_dict
Dictionary with internal variable names as keys and keys in config.ini file as values.

Type dict

48 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

flux-data-qaqc Documentation

xl_parser
engine for reading excel files with Pandas. If None use ‘openpyxl’.

Type str or None

apply_qc_flags(threshold=None, flag=None)
Apply user-provided QC values or flags for climate variables to filter poor-quality data by converting them
to null values, updates Data.df.

Specifically where the QC value is < threshold change the variables value for that date-time to null. The
other option is to use a column of flags, e.g. ‘x’ for data values to be filtered out. The threshold value
or flag may be specified in the config file’s METADATA section otherwise they should be assigned as
keyword arguments here.

Specification of which QC (flag or numeric threshold) columns should be applied to which variables is set
in the DATA section of the config file. For datasets with QC value columns with names identical to the
variable they correspond to with the suffix “_QC” the QC column names for each variable do not need to
be specified in the config file.

Keyword Arguments

• threshold (float) – default None. Threshold for QC values, if flag is below thresh-
old replace that variables value with null.

• flag (str, list, or tuple) – default None. Character flag signifying data to
filter out. Can be list or tuple of multiple flags.

Returns None

Example

If the input time series file has a column with numeric quality values named “LE_QC” which signify the
data quality for latent energy measurements, then in the config.ini file’s DATA section the following must
be specified:

[DATA]
latent_heat_flux_qc = LE_QC
...

Now you must specify the threshold of this column in which to filter out when using Data.
apply_qc_flags. For example if you want to remove all data entries of latent energy where the
“LE_QC” value is below 5, then the threshold value would be 5. The threshold can either be set in the
config file or passed as an argument. If it is set in the config file, i.e.:

[METADATA]
qc_threshold = 0.5

Then you would cimply call the method and this threshold would be applied to all QC columns specified
in the config file,

>>> from fluxdataqaqc import Data
>>> d = Data('path/to/config.ini')
>>> d.apply_qc_flags()

Alternatively, if the threshold is not defined in the config file or if you would like to use a different value
then pass it in,

>>> d.apply_qc_flags(threshold=2.5)

5.1. Data 49

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

flux-data-qaqc Documentation

Lastly, this method also can filter out based on a single or list of character flags, e.g. “x” or “bad” gievn
that the column containing these is specified in the config file for whichever variable they are to be applied
to. For example, if a flag column contains multiple flags signifying different data quality control info and
two in particular signify poor quality data, say “b” and “a”, then apply them either in the config file:

[METADATA]
qc_flag = b,a

Of within Python

>>> d.apply_qc_flags(flag=['b', 'a'])

For more explanation and examples see the “Configuration Options” section of the online documentation.

df
Pull variables out of the config and climate time series files load them into a datetime-indexed pandas.
DataFrame.

Metadata about input time series file format: “missing_data_value”, “skiprows”, and “date_parser” are
utilized when first loading the df into memory. Also, weighted and non-weighted averaging of multiple
measurements of the same climatic variable occurs on the first call of Data.df, if these options are
declared in the config file. For more details and example uses of these config options please see the
“Configuration Options” section of the online documentation.

Returns df (pandas.DataFrame)

Examples

You can utilize the df property as with any pandas.DataFrame object. However, if you would like
to make changes to the data you must first make a copy, then make the changes and then reassign it to
Data.df, e.g. if you wanted to add 5 degrees to air temp.

>>> from fluxdataqaqc import Data
>>> d = Data('path_to_config.ini')
>>> df = d.df.copy()
>>> df['air_temp_column'] = df['air_temp_column'] + 5
>>> d.df = df

The functionality shown above allows for user-controlled preprocessing and modification of any time
series data in the initial dataset. It also allows for adding new columns but if they are variables used by
flux-data-qaqc e.g. Rn or other energy balance variables, be sure to also update Data.variables
and Data.units with the appropriate entries. New or modified values will be used in any further
analysis/ploting routines within flux-data-qaqc.

By default the names of variables as found within input data are retained in QaQc.df, how-
ever you can use the naming scheme as flux-data-qaqc which can be viewed in Data.
variable_names_dict by using the the Data.inv_map dictionary which maps names from user-
defined to internal names (as opposed to Data.variables) which maps from internal names to user-
defined. For example if your input data had the following names for LE, H, Rn, and G set in your config:

[DATA]
net_radiation_col = Net radiation, W/m2
ground_flux_col = Soil-heat flux, W/m2
latent_heat_flux_col = Latent-heat flux, W/m2
sensible_heat_flux_col = Sensible-heat flux, W/m2

Then the Data.df will utilize the same names, e.g.

50 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

flux-data-qaqc Documentation

>>> # d is a Data instance
>>> d.df.head()

produces:

date Net radiation,
W/m2

Latent-heat flux,
W/m2

Sensible-heat flux,
W/m2

Soil-heat flux,
W/m2

10/1/2009
0:00

-54.02421778 0.70761 0.95511 -40.42365926

10/1/2009
0:30

-51.07744708 0.04837 -1.24935 -33.35383253

10/1/2009
1:00

-50.99438925 0.68862 1.91101 -43.17900525

10/1/2009
1:30

-51.35032377 -1.85829 -15.4944 -40.86201497

10/1/2009
2:00

-51.06604228 -1.80485 -19.1357 -39.80936855

Here is how you could rename your dataframe using flux-data-qaqc internal names,

>>> d.df.rename(columns=q.inv_map).head()

date Rn LE H G
10/1/2009 0:00 -54.02421778 0.70761 0.95511 -40.42365926
10/1/2009 0:30 -51.07744708 0.04837 -1.24935 -33.35383253
10/1/2009 1:00 -50.99438925 0.68862 1.91101 -43.17900525
10/1/2009 1:30 -51.35032377 -1.85829 -15.4944 -40.86201497
10/1/2009 2:00 -51.06604228 -1.80485 -19.1357 -39.80936855

A minor note on variable naming, if your input data variables use exactly the same names used by
flux-data-qaqc, they will be renamed by adding the prefix “input_”, e.g. “G” becomes “input_G” on
the first time reading the data from disk, i.e. the first time accessing Data.df.

Note: The temporal frequency of the input data is retained unlike the Qaqc.df which automatically
resamples time series data to daily frequency.

hourly_ASCE_refET(reference=’short’, anemometer_height=None)
Calculate hourly ASCE standardized short (ETo) or tall (ETr) reference ET from input data and wind
measurement height.

If input data’s time frequency is < hourly the input data will be resampled to hourly and the output refer-
ence ET time series will be returned as a datetime pandas.Series object, if the input data is already
hourly then the resulting time series will automatically be merged into the Data.df dataframe named
“ASCE_ETo” or “ASCE_ETr” respectively.

Keyword Arguments

• reference (str) – default “short”, calculate tall or short ASCE reference ET.

• anemometer_height (float or None) – wind measurement height in meters ,
default None. If None then look for the “anemometer_height” entry in the METADATA
section of the config.ini, if not there then print a warning and use 2 meters.

Returns None or pandas.Series

5.1. Data 51

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

flux-data-qaqc Documentation

Hint: The input variables needed to run this method are: vapor pressure, wind speed, incoming shortwave
radiation, and average air temperature. If vapor pressure deficit and average air temperature exist, the actual
vapor pressure will automatically be calculated.

plot(ncols=1, output_type=’save’, out_file=None, suptitle=”, plot_width=1000, plot_height=450, siz-
ing_mode=’scale_both’, merge_tools=False, link_x=True, **kwargs)

Creates a series of interactive diagnostic line and scatter plots of input data in whichever temporal fre-
quency it is in.

The main interactive features of the plots include: pan, selection and scrol zoom, hover tool that shows
paired variable values including date, and linked x-axes that pan/zoom togehter for daily and monthly time
series plots.

It is possible to change the format of the output plots including adjusting the dimensions of subplots,
defining the number of columns of subplots, setting a super title that accepts HTML, and other options. If
variables are not present for plots they will not be created and a warning message will be printed. There
are two options for output: open a temporary file for viewing or saving a copy to QaQc.out_dir.

A list of all potential time series plots created:

• energy balance components

• radiation components

• multiple soil heat flux measurements

• air temperature

• vapor pressure and vapor pressure deficit

• wind speed

• precipitation

• latent energy

• multiple soil moisture measurements

Keyword Arguments

• ncols (int) – default 1. Number of columns of subplots.

• output_type (str) – default “save”. How to output plots, “save”, “show”
in browser, “notebook” for Jupyter Notebooks, “return_figs” to return a list
of Bokeh bokeh.plotting.figure.Figure`s, or "return_grid" to
return the :obj:`bokeh.layouts.gridplot.

• out_file (str or None) – default None. Path to save output file, if None save
output to Data.out_dir with the name [site_id]_input_plots.html where [site_id] is
Data.site_id.

• suptitle (str or None) – default None. Super title to go above plots, accepts
HTML/CSS syntax.

• plot_width (int) – default 1000. Width of subplots in pixels.

• plot_height (int) – default 450. Height of subplots in pixels, note for subplots the
height will be forced as the same as plot_width.

• sizing_mode (str) – default “scale_both”. Bokeh option to scale dimensions of
bokeh.layouts.gridplot.

52 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.bokeh.org/en/latest/docs/reference/layouts.html#bokeh.layouts.gridplot

flux-data-qaqc Documentation

• merge_tools (bool) – default False. Merges all subplots toolbars into a single location
if True.

• link_x (bool) – default True. If True link x axes of daily time series plots and monthly
time series plots so that when zooming or panning on one plot they all zoom accordingly,
the axes will also be of the same length.

Example

Starting from a correctly formatted config.ini and climate time series file, this example shows how to read
in the data and produce a series of plots of input data as it is found in the input data file (unlike QaQc.
plot which produces plots at daily and monthly temporal frequency). This example also shows how to
display a title at the top of plot with the site’s location and site ID.

>>> from fluxdataqaqc import Data
>>> d = Data('path/to/config.ini')
>>> # create plot title from site ID and location in N. America
>>> title = "Site: {}; Lat: {}N; Long: {}W".format(
>>> q.site_id, q.latitude, q.longitude
>>>)
>>> q.plot(
>>> ncols=2, output_type='show', plot_width=500, suptitle=title
>>>)

Note, we specified the width of plots to be smaller than default because we want both columns of subplots
to be viewable on the screen.

Tip: To reset all subplots at once, refresh the page with your web browser.

Note: Additional keyword arguments that are recognized by bokeh.layouts.gridplot are also
accepted by Data.plot.

See also:

QaQc.plot

variable_names_dict = {'G': 'ground_flux_col', 'H': 'sensible_heat_flux_col', 'H_user_corr': 'sensible_heat_flux_corrected_col', 'LE': 'latent_heat_flux_col', 'LE_user_corr': 'latent_heat_flux_corrected_col', 'Rn': 'net_radiation_col', 'date': 'datestring_col', 'lw_in': 'longwave_in_col', 'lw_out': 'longwave_out_col', 'ppt': 'precip_col', 'rh': 'rel_humidity_col', 'sw_in': 'shortwave_in_col', 'sw_out': 'shortwave_out_col', 'sw_pot': 'shortwave_pot_col', 't_avg': 'avg_temp_col', 'vp': 'vap_press_col', 'vpd': 'vap_press_def_col', 'wd': 'wind_dir_col', 'ws': 'wind_spd_col'}

5.2 QaQc

class fluxdataqaqc.QaQc(data=None, drop_gaps=True, daily_frac=1.0, max_interp_hours=2,
max_interp_hours_night=4)

Bases: fluxdataqaqc.plot.Plot, fluxdataqaqc.util.Convert

Numerical routines for correcting daily energy balance closure for eddy covariance data and other data analysis
tools.

Two routines are provided for improving energy balance closure by adjusting turbulent fluxes, latent energy and
sensible heat, the Energy Balance Ratio method (modified from FLUXNET) and the Bowen Ratio method.

The QaQc object also has multiple tools for temporal frequency aggregation and resampling, estimation of
climatic and statistical variables (e.g. ET and potential shortwave radiation), downloading gridMET reference

5.2. QaQc 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.bokeh.org/en/latest/docs/reference/layouts.html#bokeh.layouts.gridplot
https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/

flux-data-qaqc Documentation

ET, managing data and metadata, interactive validation plots, and managing a structure for input and output data
files. Input data is expected to be a Data instance or a pandas.DataFrame.

Keyword Arguments

• data (Data) – Data instance to create QaQc instance.

• drop_gaps (bool) – default True. If True automatically filter variables on days with
sub-daily measurement gaps less than daily_frac.

• daily_frac (float) – default 1.00. Fraction of sub-daily data required otherwise the
daily value will be filtered out if drop_gaps is True. E.g. if daily_frac = 0.5 and
the input data is hourly, then data on days with less than 12 hours of data will be forced
to null within QaQc.df. This is important because systematic diurnal gaps will affect
the autmoatic resampling that occurs when creating a QaQc instance and the daily data is
used in closure corrections, other calculations, and plots. If sub-daily linear interpolation is
applied to energy balance variables the gaps are counted after the interpolation.

• max_interp_hours (None or float) – default 2. Length of largest gap to fill with
linear interpolation in energy balance variables if input datas temporal frequency is less than
daily. This value will be used to fill gaps when 𝑅𝑛 > 0 or 𝑅𝑛 is missing during each day.

• max_interp_hours_night (None or float) – default 4. Length of largest gap to
fill with linear interpolation in energy balance variables if input datas temporal frequency is
less than daily when 𝑅𝑛 < 0 within 12:00PM-12:00PM daily intervals.

agg_dict
Dictionary with internal variable names as keys and method of temporal resampling (e.g. “mean” or
“sum”) as values.

Type dict

config
Config parser instance created from the data within the config.ini file.

Type configparser.ConfigParser

config_file
Absolute path to config.ini file used for initialization of the fluxdataqaqc.Data instance used to
create the QaQc instance.

Type pathlib.Path

corrected
False until an energy balance closure correction has been run by calling QaQc.correct_data.

Type bool

corr_methods
List of Energy Balance Closure correction routines usable by QaQc.correct_data.

Type tuple

corr_meth
Name of most recently applied energy balance closure correction.

Type str or None

elevation
Site elevation in meters.

Type float

54 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

flux-data-qaqc Documentation

gridMET_exists
True if path to matching gridMET time series file exists on disk and has time series for reference ET and
precipitation and the dates for these fully overlap with the energy balance variables, i.e. the date index of
QaQc.df.

Type bool

gridMET_meta
Dictionary with information for gridMET variables that may be downloaded using QaQc.
download_gridMET.

Type dict

inv_map
Dictionary with input climate file names as keys and internal names as values. May only include pairs
when they differ.

Type dict

latitude
Site latitude in decimal degrees.

Type float

longitude
Site longitude in decimal degrees.

Type float

out_dir
Default directory to save output of QaQc.write or QaQc.plot methods.

Type pathlib.Path

n_samples_per_day
If initial time series temporal frequency is less than 0 then this value will be updated to the number of
samples detected per day, useful for post-processing based on the count of sub-daily gaps in energy balance
variables, e.g. “LE_subday_gaps”.

Type int

plot_file
path to plot file once it is created/saved by QaQc.plot.

Type pathlib.Path or None

site_id
Site ID.

Type str

temporal_freq
Temporal frequency of initial (as found in input climate file) data as determined by pandas.
infer_freq.

Type str

units
Dictionary with internal variable names as keys and units as found in config as values.

Type dict

variables
Dictionary with internal variable names as keys and names as found in the input data as values.

5.2. QaQc 55

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

flux-data-qaqc Documentation

Type dict

Note: Upon initialization of a QaQc instance the temporal frequency of the input data checked using pandas.
infer_freq which does not always correctly parse datetime indices, if it is not able to correctly determine
the temporal frequency the time series will be resampled to daily frequency but if it is in fact already at daily
frequency the data will be unchanged. In this case the QaQc.temporal_freq will be set to “na”.

agg_dict = {'ASCE_ETo': 'sum', 'ASCE_ETr': 'sum', 'ET': 'sum', 'ET_corr': 'sum', 'ET_fill': 'sum', 'ET_fill_val': 'sum', 'ET_gap': 'sum', 'ET_user_corr': 'sum', 'G': 'mean', 'G_subday_gaps': 'sum', 'H': 'mean', 'H_corr': 'mean', 'H_subday_gaps': 'sum', 'H_user_corr': 'mean', 'LE': 'mean', 'LE_corr': 'mean', 'LE_subday_gaps': 'sum', 'LE_user_corr': 'mean', 'Rn': 'mean', 'Rn_subday_gaps': 'sum', 'br': 'mean', 'ebr': 'mean', 'ebr_5day_clim': 'mean', 'ebr_corr': 'mean', 'ebr_user_corr': 'mean', 'energy': 'mean', 'flux': 'mean', 'flux_corr': 'mean', 'gridMET_ETo': 'sum', 'gridMET_ETr': 'sum', 'gridMET_prcp': 'sum', 'lw_in': 'mean', 'lw_out': 'mean', 'ppt': 'sum', 'ppt_corr': 'sum', 'rh': 'mean', 'rso': 'mean', 'sw_in': 'mean', 'sw_out': 'mean', 'sw_pot': 'mean', 't_avg': 'mean', 't_dew': 'mean', 't_max': 'mean', 't_min': 'mean', 'vp': 'mean', 'vpd': 'mean', 'ws': 'mean'}

corr_methods = ('ebr', 'br', 'lin_regress')

correct_data(meth=’ebr’, et_gap_fill=True, y=’Rn’, refET=’ETr’, x=[’G’, ’LE’, ’H’],
fit_intercept=False)

Correct turblent fluxes to improve energy balance closure using an Energy Balance Ratio method modified
from FLUXNET.

Currently three correction options are available: ‘ebr’ (Energy Balance Ratio), ‘br’ (Bowen Ratio), and
‘lin_regress’ (least squares linear regression). If you use one method followed by another corrected,the
corrected versions of LE, H, ET, ebr, etc. will be overwritten with the most recently used approach.

This method also computes potential clear sky radiation (saved as “rso”) using an ASCE approach based
on station elevation and latitude. ET is calculated from raw and corrected LE using daily air temperature
to correct the latent heat of vaporization, if air temp. is not available in the input data then air temp. is
assumed at 20 degrees celcius.

Corrected or otherwise newly calculated variables are named using the following suffixes to distinguish
them:

uncorrected LE, H, etc. from input data have no suffix
_corr uses adjusted LE, H, etc. from the correction method used
_user_corr uses corrected LE, H, etc. found in data file (if provided)

Parameters

• y (str) – name of dependent variable for regression, must be in QaQc.variables
keys, or a user-added variable. Only used if meth='lin_regress'.

• x (str or list) – name or list of independent variables for regression, names
must be in QaQc.variables keys, or a user-added variable. Only used if
meth='lin_regress'.

Keyword Arguments

• meth (str) – default ‘ebr’. Method to correct energy balance.

• et_gap_fill (bool) – default True. If true fill any remaining gaps in corrected ET
with ETr * ETrF, where ETr is alfalfa reference ET from gridMET and ETrF is the filtered,
smoothed (7 day moving avg. min 2 days) and linearly interpolated crop coefficient. The
number of days in each month that corrected ET are filled will is provided in QaQc.
monthly_df as the column “ET_gap”.

• refET (str) – default “ETr”. Which gridMET reference product to use for ET gap
filling, “ETr” or “ETo” are valid options.

• fit_intercept (bool) – default False. Fit intercept for regression or set to zero if
False. Only used if meth='lin_regress'.

• apply_coefs (bool) – default False. If True then apply fitted coefficients to their
respective variables for linear regression correction method, rename the variables with the
suffix “_corr”.

56 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

flux-data-qaqc Documentation

Returns None

Example

Starting from a correctly formatted config.ini and climate time series file, this example shows how to read
in the data and apply the energy balance ratio correction without gap-filling with gridMET ETr x ETrF.

>>> from fluxdataqaqc import Data, QaQc
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> q.corrected

False

Now apply the energy balance closure correction

>>> q.correct_data(meth='ebr', et_gap_fill=False)
>>> q.corrected

True

Note: If et_gap_fill is set to True (default) the gap filled days of corrected ET will be used to
recalculate LE_corr for those days with the gap filled values, i.e. LE_corr will also be gap-filled.

Note: The ebr_corr variable or energy balance closure ratio is calculated from the corrected versions of
LE and H independent of the method. When using the ‘ebr’ method the energy balance correction factor
(what is applied to the raw H and LE) is left as calculated (inverse of ebr) and saved as ebc_cf.

See also:

For explanation of the linear regression method see the QaQc.lin_regress method, calling that
method with the keyword argument apply_coefs=True and 𝑅𝑛 as the y variable and the other en-
ergy balance components as the x variables will give the same result as the default inputs to this function
when meth='lin_regress.

daily_ASCE_refET(reference=’short’, anemometer_height=None)
Calculate daily ASCE standardized short (ETo) or tall (ETr) reference ET from input data and wind mea-
surement height.

The resulting time series will automatically be merged into the Data.df dataframe named “ASCE_ETo”
or “ASCE_ETr” respectively.

Keyword Arguments

• reference (str) – default “short”, calculate tall or short ASCE reference ET.

• anemometer_height (float or None) – wind measurement height in meters ,
default None. If None then look for the “anemometer_height” entry in the METADATA
section of the config.ini, if not there then print a warning and use 2 meters.

Returns None

Note: If the hourly ASCE variables were prior calculated from a Data instance they will be overwritten
as they are saved with the same names.

5.2. QaQc 57

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

flux-data-qaqc Documentation

df
See fluxdataqaqc.Data.df as the only difference is that the QaQc.df is first resampled to daily
frequency.

download_gridMET(variables=None)
Download reference ET (alfalfa and grass) and precipitation from gridMET for all days in flux station time
series by default.

Also has ability to download other specific gridMET variables by passing a list of gridMET variable names.
Possible variables and their long form can be found in QaQc.gridMET_meta.

Upon download gridMET time series for the nearest gridMET cell will be merged into the instances
dataframe attibute QaQc.df and all gridMET variable names will have the prefix “gridMET_” for iden-
tification.

The gridMET time series file will be saved to a subdirectory called “gridMET_data” within the directory
that contains the config file for the current QaQc instance and named with the site ID and gridMET cell
centroid lat and long coordinates in decimal degrees.

Parameters variables (None, str, list, or tuple) – default None. List of grid-
MET variable names to download, if None download ETr and precipitation. See the keys of
the QaQc.gridMET_meta dictionary for a list of all variables that can be downloaded by
this method.

Returns None

Note: Any previously downloaded gridMET time series will be overwritten when calling the method,
however if using the the gap filling method of the “ebr” correction routine the download will not overwrite
currently existing data so long as gridMET reference ET and precipitation is on disk and its path is properly
set in the config file.

classmethod from_dataframe(df, site_id, elev_m, lat_dec_deg, var_dict,
drop_gaps=True, daily_frac=1.0, max_interp_hours=2,
max_interp_hours_night=4)

Create a QaQc object from a pandas.DataFrame object.

Parameters

• df (pandas.DataFrame) – DataFrame of climate variables with datetime index named
‘date’

• site_id (str) – site identifier such as station name

• elev_m (int or float) – elevation of site in meters

• lat_dec_deg (float) – latitude of site in decimal degrees

• var_dict (dict) – dictionary that maps flux-data-qaqc variable names to
user’s columns in df e.g. {‘Rn’: ‘netrad’, . . . } see fluxdataqaqc.Data.
variable_names_dict for list of flux-data-qaqc variable names

Returns None

Note: When using this method, any output files (CSVs, plots) will be saved to a directory named “output”
in the current working directory.

gridMET_meta = {'ETr': {'name': 'daily_mean_reference_evapotranspiration_alfalfa', 'nc_suffix': 'agg_met_etr_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_ETr', 'units': 'mm'}, 'pet': {'name': 'daily_mean_reference_evapotranspiration_grass', 'nc_suffix': 'agg_met_pet_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_ETo', 'units': 'mm'}, 'pr': {'name': 'precipitation_amount', 'nc_suffix': 'agg_met_pr_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_prcp', 'units': 'mm'}, 'sph': {'name': 'daily_mean_specific_humidity', 'nc_suffix': 'agg_met_sph_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_q', 'units': 'kg/kg'}, 'srad': {'name': 'daily_mean_shortwave_radiation_at_surface', 'nc_suffix': 'agg_met_srad_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_srad', 'units': 'w/m2'}, 'tmmn': {'name': 'daily_minimum_temperature', 'nc_suffix': 'agg_met_tmmn_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_tmin', 'units': 'K'}, 'tmmx': {'name': 'daily_maximum_temperature', 'nc_suffix': 'agg_met_tmmx_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_tmax', 'units': 'K'}, 'vs': {'name': 'daily_mean_wind_speed', 'nc_suffix': 'agg_met_vs_1979_CurrentYear_CONUS.nc#fillmismatch', 'rename': 'gridMET_u10', 'units': 'm/s'}}

lin_regress(y, x, fit_intercept=False, apply_coefs=False)

58 Chapter 5. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

flux-data-qaqc Documentation

Least squares linear regression on single or multiple independent variables.

For example, if the dependent variable (y) is 𝑅𝑛 and the independent variables (x) are 𝐿𝐸 and
𝐻 , then the linear regression will solve for the best fit coefficients of 𝑅𝑛 = 𝑐0 + 𝑐1𝐿𝐸 + 𝑐2𝐻 .
Any number of variables in the QaQc.variables can be used for x and one for y.

If the variables chosen for regression are part of the energy balance components, i.e.
𝑅𝑛,𝐺,𝐿𝐸,𝐻 and apply_coefs=True, then the best fit coefficients will be applied to their
respecitive variables with consideration of the energy balance equation, i.e. the signs of the coef-
ficients will be corrected according to 𝑅𝑛−𝐺 = 𝐿𝐸 +𝐻 , for example if y=H and x=['Rn',
'G','LE]. i.e. solving 𝐻 = 𝑐0 + 𝑐1𝑅𝑛 + 𝑐2𝐺 + 𝑐3𝐿𝐸 then the coefficients 𝑐2 and 𝑐3 will
be multiplied by -1 before applying them to correct 𝐺 and 𝐿𝐸 according to the energy balance
equation.

This method returns an pandas.DataFrame object containing results of the linear regres-
sion including the coefficient values, number of data pairs used in the, the root-mean-square-
error, and coefficient of determination. This table can also be retrieved from the QaQc.
lin_regress_results instance attribute.

Arguments:

y (str): name of dependent variable for regression, must be in QaQc.variables
keys, or a user-added variable.

x (str or list): name or list of independent variables for regression, names must be in
QaQc.variables keys, or a user-added variable.

Keyword Arguments:

fit_intercept (bool): default False. Fit intercept for regression or set to zero if False.

apply_coefs (bool): default False. If True then apply fitted coefficients to their respec-
tive variables, rename the variables with the suffix “_corr”.

Returns: pandas.DataFrame

Example: Let’s say we wanted to compute the linear relationship between net radiation to the
other energy balance components which may be useful if we have strong confidence in net
radiation measurements for example. The resulting coefficients of regression would give us
an idea of whether the other components were “under-measured” or “over-measured”. Then,
starting with a Data instance:

>>> Q = QaQc(Data_instance)
>>> Q.lin_regress(y='Rn', x=['G','H','LE'], fit_intercept=True)
>>> Q.lin_regress_result

This would produce something like the following,

SITE_IDY (depen-
dent var.)

c0 (inter-
cept)

c1
(coef
on G)

c2 (coef
on LE)

c3
(coef
on H)

RMSE
(w/m2)

r2
(coef.
det.)

n (sam-
ple
count)

a_site Rn 6.993507812298831.552 1.054 0.943 18.25 0.91 3386

In this case the intercept is telling us that there may be a systematic or constant error
in the independent variables and that 𝐺 is “under-measured” at the sensor by over 50
precent, etc. if we assume daily 𝑅𝑛 is accurate as measured.

Tip: You may also use multiple linear regression to correct energy balance components using

5.2. QaQc 59

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/constants.html#True
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

flux-data-qaqc Documentation

the QaQc.correct_data method by passing the meth='lin_regress' keyword ar-
gument.

monthly_df
Temporally resample time series data to monthly frequency based on monthly means or sums based on
QaQc.agg_dict, provides data as pandas.DataFrame.

Note that monthly means or sums are forced to null values if less than 20 percent of a months days are
missing in the daily data (QaQc.df). Also, for variables that are summed (e.g. ET or precipitation)
missing days (if less than 20 percent of the month) will be filled with the month’s daily mean value before
summation.

If a QaQc instance has not yet run an energy balance correction i.e. QaQc.corrected = False before
accessing monthly_df then the default routine of data correction (energy balance ratio method) will be
conducted.

Utilize the QaQc.monthly_df property the same way as the fluxdataqaqc.Data.df, see it’s API
documentation for examples.

Tip: If you have additional variables in QaQc.df or would like to change the aggregation method
for the monthly time series, adjust the instance attribute QaQc.agg_dict before accessing the QaQc.
monthly_df.

plot(ncols=1, output_type=’save’, out_file=None, suptitle=”, plot_width=1000, plot_height=450, siz-
ing_mode=’scale_both’, merge_tools=False, link_x=True, **kwargs)

Creates a series of interactive diagnostic line and scatter plots of input and computed daily and monthly
aggregated data.

The main interactive features of the plots include: pan, selection and scrol zoom, hover tool that shows
paired variable values including date, and linked x-axes that pan/zoom togehter for daily and monthly time
series plots.

It is possible to change the format of the output plots including adjusting the dimensions of subplots,
defining the number of columns of subplots, setting a super title that accepts HTML, and other options. If
variables are not present for plots they will not be created and a warning message will be printed. There
are two options for output: open a temporary file for viewing or saving a copy to QaQc.out_dir.

A list of all potential time series plots created:

• energy balance components

• radiation components

• incoming shortwave radiation with ASCE potential clear sky (daily only)

• multiple soil heat flux measurements

• air temperature

• vapor pressure and vapor pressure deficit

• wind speed

• station precipitation and gridMET precipitation

• initial and corrected latent energy

• initial, corrected, gap filled, and reference evapotranspiration

• crop coefficient and smoothed and interpolated crop coefficient

• initial and corrected energy balance ratio

60 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/constants.html#False

flux-data-qaqc Documentation

• multiple soil moisture measurements

A list of all potential scatter plots created:

• radiative versus turblent fluxes, initial and corrected

• initial versus corrected latent energy

• initial versus corrected evapotranspiration

Keyword Arguments

• ncols (int) – default 1. Number of columns of subplots.

• output_type (str) – default “save”. How to output plots, “save”, “show”
in browser, “notebook” for Jupyter Notebooks, “return_figs” to return a list
of Bokeh bokeh.plotting.figure.Figure`s, or "return_grid" to
return the :obj:`bokeh.layouts.gridplot.

• out_file (str or None) – default None. Path to save output file, if None save
output to QaQc.out_dir with the name [site_id]_plots.html where [site_id] is QaQc.
site_id.

• suptitle (str or None) – default None. Super title to go above plots, accepts
HTML/CSS syntax.

• plot_width (int) – default 1000. Width of subplots in pixels.

• plot_height (int) – default 450. Height of subplots in pixels, note for subplots the
height will be forced as the same as plot_width.

• sizing_mode (str) – default “scale_both”. Bokeh option to scale dimensions of
bokeh.layouts.gridplot.

• merge_tools (bool) – default False. Merges all subplots toolbars into a single location
if True.

• link_x (bool) – default True. If True link x axes of daily time series plots and monthly
time series plots so that when zooming or panning on one plot they all zoom accordingly,
the axes will also be of the same length.

Example

Starting from a correctly formatted config.ini and climate time series file, this example shows how to read
in the data and produce the default series of plots for viewing with the addition of text at the top of plot
that states the site’s location and ID.

>>> from fluxdataqaqc import Data, QaQc
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> q.correct_data()
>>> # create plot title from site ID and location in N. America
>>> title = "Site: {}; Lat: {}N; Long: {}W".format(
>>> q.site_id, q.latitude, q.longitude
>>>)
>>> q.plot(
>>> ncols=2, output_type='show', plot_width=500, suptitle=title
>>>)

Note, we specified the width of plots to be smaller than default because we want both columns of subplots
to be viewable on one page.

5.2. QaQc 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.bokeh.org/en/latest/docs/reference/layouts.html#bokeh.layouts.gridplot
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

flux-data-qaqc Documentation

Tip: To reset all subplots at once, refresh the page with your web browser.

Note: Additional keyword arguments that are recognized by bokeh.layouts.gridplot are also
accepted by QaQc.plot.

write(out_dir=None, use_input_names=False)
Save daily and monthly time series of initial and “corrected” data in CSV format.

Note, if the energy balance closure correction (QaQc.correct_data) has not been run, this method
will run it with default options before saving time series files to disk.

The default location for saving output time series files is within an “output” subdifrectory of the parent
directory containing the config.ini file that was used to create the fluxdataqaqc.Data and QaQc
objects, the names of the files will start with the site_id and have either the “daily_data” or “monthly_data”
suffix.

Keyword Arguments

• out_dir (str or None) – default None. Directory to save CSVs, if None save to
out_dir instance variable (typically “output” directory where config.ini file exists).

• use_input_names (bool) – default False. If False use flux-data-qaqc
variable names as in output file header, or if True use the user’s input variable names
where possible (for variables that were read in and not modified or calculated by
flux-data-qaqc).

Returns None

Example

Starting from a config.ini file,

>>> from fluxdataqaqc import Data, QaQc
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> # note no energy balance closure correction has been run
>>> q.corrected

False
>>> q.write()
>>> q.corrected

True

Note: To save data created by multiple correction routines, be sure to run the correction and then save to
different output directories otherwise output files will be overwritten with the most recently used correction
option.

5.3 Plot

class fluxdataqaqc.Plot
Bases: object

62 Chapter 5. API Reference

https://docs.bokeh.org/en/latest/docs/reference/layouts.html#bokeh.layouts.gridplot
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

flux-data-qaqc Documentation

Container of plot routines of fluxdataqaqc including static methods that can be used to create and update
interactive line and scatter plots from an arbitrary pandas.DataFrame instance.

Note: The Data and QaQc objects both inherit all methods of Plot therefore allowing them to be easily used
for custom interactive time series plots for data within input data (in fluxdataqaqc.Data.df) and daily
and monthly data in fluxdataqaqc.QaQc.df and QaQc.monthly_df.

static add_lines(fig, df, plt_vars, colors, x_name, source, labels=None, **kwargs)
Add a multiple time series to a bokeh.plotting.figure.Figure object using data from a datetime
indexed pandas.DataFrame with an interactive hover tool.

Interactive hover shows the values of all time series data and date that is added to the figure.

Parameters

• df (pandas.DataFrame) – pandas.DataFrame containing time series data.

• plt_vars (list) – list of data columns in df to plot.

• colors (list) – list of line colors for variables in plt_vars.

• x_name (str) – name of the x-axis variable, e.g. the datetime index, in the pandas.
DataFrame (df) containing data to plot.

• source (bokeh.models.sources.ColumnDataSource) – column data source
created from the pandas.DataFrame with data to plot, i.e. df.

• labels (list or None) – default None. Labels for each plot variable in plt_vars.

Returns if none of the variables in plt_vars are found in df then return None otherwise
returns the updated figure.

Return type ret (None or bokeh.plotting.figure.Figure)

Example

Similar to Plot.line_plot we first need to create a bokeh.models.sources.
ColumnDataSource from a pandas.DataFrame. This example shows how to plot two variables,
daily corrected latent energy and sensible heat on the same plot.

>>> from fluxdataqaqc import Data, QaQc, Plot
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> q.correct_data()

Now the QaQc instance should have the “LE_corr” (corrected latent energy) and “H_corr” (corrected
sensible heat) columns, we can now make a bokeh.models.sources.ColumnDataSource from
fluxdataqaqc.QaQc.df or fluxdataqaqc.QaQc.monthly_df,

>>> from bokeh.plotting import ColumnDataSource, figure, show
>>> df = q.df
>>> plt_vars = ['LE_corr', 'H_corr']
>>> colors = ['blue', 'red']
>>> labels = ['LE', 'H']
>>> source = ColumnDataSource(df)
>>> fig = figure(
>>> x_axis_label='date', y_axis_label='Corrected Turbulent Flux'
>>>)

(continues on next page)

5.3. Plot 63

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource

flux-data-qaqc Documentation

(continued from previous page)

>>> Plot.add_lines(
>>> fig, df, plt_vars, colors, 'date', source, labels=labels
>>>)
>>> show(fig)

Note: This method is also available from the Data and QaQc objects.

static line_plot(fig, x, y, source, color, label=None, x_axis_type=’date’, **kwargs)
Add a single time series to a bokeh.plotting.figure.Figure object using data from a datetime
indexed pandas.DataFrame with an interactive hover tool.

Interactive hover shows the values of all time series data and date that is added to the figure.

Parameters

• fig (bokeh.plotting.figure.Figure) – a figure instance to add the line to.

• x (str) – name of the datetime index or column in the pandas.DataFrame containing
data to plot.

• y (str) – name of the column in the pandas.DataFrame to plot.

• source (bokeh.models.sources.ColumnDataSource) – column data source
created from the pandas.DataFrame with data to plot.

• color (str) – color of plot line, see Bokeh for color options.

• label (str or None) – default None. Label for plot legend (for y).

• x_axis_type (str or None) – default ‘date’. If “date” then the x-axis will be format-
ted as month-day-year.

Returns None

Example

To use the Plot.line_plot function we first need to create a bokeh.models.sources.
ColumnDataSource from a pandas.DataFrame. Let’s say we want to plot the monthly time series
of corrected latent energy, starting from a config.ini file,

>>> from fluxdataqaqc import Data, QaQc, Plot
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> q.correct_data()

Now the QaQc should have the “LE_corr” (corrected latent energy) column, we can now make a bokeh.
models.sources.ColumnDataSource from fluxdataqaqc.QaQc.df or fluxdataqaqc.
QaQc.monthly_df,

>>> from bokeh.plotting import ColumnDataSource, figure, show
>>> source = ColumnDataSource(q.monthly_df)
>>> # create the figure before using line_plot
>>> fig = figure(x_axis_label='date', y_axis_label='Corrected LE')
>>> Plot.line_plot(
>>> fig, 'date', 'LE_corr', source, color='red', line_width=3
>>>)
>>> show(fig)

64 Chapter 5. API Reference

https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource

flux-data-qaqc Documentation

Notice, line_width is not an argument to Plot.line_plot but it is an acceptable keyword argu-
ment to bokeh.plotting.figure.Figure and therefore will work as expected.

Note: This method is also available from the Data and QaQc objects.

static scatter_plot(fig, x, y, source, color, label=”, lsrl=True, date_name=’date’, **kwargs)
Add paired time series data to an interactive Bokeh scatter plot bokeh.plotting.figure.Figure.

Handles missing data points (gaps) by masking out indices in x and y where one or both are null. The
lsrl option adds the best fit least squares linear regression line with y-intercept through zero and reports
the slope of the line in the figure legend. Interactive hover shows the values of all paired (x,y) data and
date that is added to the figure.

Returns minimum and maximum x and minimum and maximum y values of paired data which
can be used for adding a one to one line to the figure or other uses.

Return type (tuple)

Example

Let’s say that we wanted to run the energy balance ratio closure correction including gap filling with
reference ET * crop coefficient and then plot corrected ET versus the calculated ET from reference ET
(named “et_fill” in flux-data-qaqc) which is calculated on all days even those without gaps. Similar
to Plot.line_plot we first need to create a bokeh.models.sources.ColumnDataSource
from a pandas.DataFrame.

>>> from fluxdataqaqc import Data, QaQc
>>> d = Data('path/to/config.ini')
>>> q = QaQc(d)
>>> q.correct_data()

Now the QaQc instance should have the “et_corr” (corrected ET) and “et_fill” (et calculated
from reference ET and crop coefficient) columns, we can now make a bokeh.models.
sources.ColumnDataSource from fluxdataqaqc.QaQc.df or fluxdataqaqc.QaQc.
monthly_df,

>>> from bokeh.plotting import ColumnDataSource, figure, show
>>> df = q.df
>>> source = ColumnDataSource(df)
>>> fig = figure(
>>> x_axis_label='ET, corrected', y_axis_label='ET, gap fill'
>>>)
>>> # note, we are calling this plot method from a QaQc instace
>>> q.scatter_plot(
>>> fig, 'ET_corr', 'ET_fill', source, 'red', label='lslr'
>>>)
>>> show(fig)

The label keyword argument will be used in the legend and since the least squares linear regression line
between x and y is being calculated the slope of the line will also be printed in the legend. In this case, if
the slope of the regression line is 0.94 then the legend will read “lslr, slope=0.94”.

Note: Extra keyword arguments (accepted by bokeh.plotting.figure.Figure) will be passed
to the scatter plot but not to the least squares regression line plot.

5.3. Plot 65

https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/plotting/figure.html#bokeh.plotting.Figure

flux-data-qaqc Documentation

Note: This method is also available from the Data and QaQc objects.

5.4 utility classes and functions

Collection of utility objects and functions for the fluxdataqaqc module.

class fluxdataqaqc.util.Convert
Bases: object

Tools for unit conversions for flux-data-qaqc module.

allowable_units = {'G': ['w/m2', 'mj/m2'], 'H': ['w/m2', 'mj/m2'], 'LE': ['w/m2', 'mj/m2'], 'Rn': ['w/m2', 'mj/m2'], 'lw_in': ['w/m2', 'mj/m2'], 'lw_out': ['w/m2', 'mj/m2'], 'ppt': ['mm', 'in', 'm'], 'sw_in': ['w/m2'], 'sw_out': ['w/m2', 'mj/m2'], 't_avg': ['c', 'f', 'k'], 't_max': ['c', 'f', 'k'], 't_min': ['c', 'f', 'k'], 'vp': ['kpa', 'hpa', 'pa'], 'vpd': ['kpa', 'hpa', 'pa'], 'ws': ['m/s', 'mph']}

classmethod convert(var_name, initial_unit, desired_unit, df)
Givin a valid initial and desired variable dimension for a variable within a pandas.DataFrame, make
the conversion and return the updated pandas.DataFrame.

For a list of variables that require certain units within flux-data-qaqc see Convert.
allowable_units (names of allowable options of input variable dimensions) and Convert.
required_units (for the mandatory dimensions of certain variables before running QaQc calcula-
tions).

Parameters

• var_name (str) – name of variable to convert in df.

• initial_unit (str) – name of initial unit of variable, must be valid from Convert.
allowable_units.

• desired_unit (str) – name of units to convert to, also must be valid.

• df (pandas.DataFrame) – pandas.DataFrame containing variable to be con-
verted, i.e. with var_name in columns.

Returns updated dataframe with specified variable’s units converted

Return type df (pandas.DataFrame)

Note: Many potential dimensions may not be provided for automatic conversion, if so you may need to
update your variable dimensions manually, e.g. within a Data.df before creating a QaQc instance. Unit
conversions are required for variables that can potentially be used in calculations within Data or QaQc.

pretty_unit_names = {'c': 'C', 'f': 'F', 'hpa': 'hPa', 'k': 'K', 'kpa': 'kPa', 'pa': 'Pa'}

required_units = {'G': 'w/m2', 'H': 'w/m2', 'LE': 'w/m2', 'Rn': 'w/m2', 'lw_in': 'w/m2', 'lw_out': 'w/m2', 'ppt': 'mm', 'sw_in': 'w/m2', 'sw_out': 'w/m2', 't_avg': 'c', 't_max': 'c', 't_min': 'c', 'vp': 'kpa', 'vpd': 'kpa', 'ws': 'm/s'}

fluxdataqaqc.util.monthly_resample(df, cols, agg_str, thresh=0.75)
Resample dataframe to monthly frequency while excluding months missing more than a specified percentage of
days of the month.

Parameters

• df (pandas.DataFrame) – datetime indexed DataFrame instance

• cols (list) – list of columns in df to resample to monthy frequency

• agg_str (str) – resample function as string, e.g. ‘mean’ or ‘sum’

66 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#object
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

flux-data-qaqc Documentation

Keyword Arguments thresh (float) – threshold (decimal fraction) of how many days in a
month must exist for it to be temporally resampled, otherwise the monthly value for the month
will be null.

Returns datetime indexed DataFrame that has been resampled to monthly time frequency.

Return type ret (pandas.DataFrame)

Note: If taking monthly totals (agg_str = ‘sum’) missing days will be filled with the months daily mean before
summation.

fluxdataqaqc.util.write_configs(meta_df, data_dict, out_dir=None)
Write multiple config files based on collection of site metadata and a dictionary containing variable information.

Useful for creating config files for flux-data-qaqc for batches of flux stations that utilize the same naming
conventions and formatting.

Parameters

• meta_df (pandas.DataFrame) – dataframe that contains the following columns (or
more) that describe metadata for multiple climate stations: ‘site_id’, ‘climate_file_path’,
‘station_longitude’ ‘station_elevation’, ‘station_latitude’, and ‘missing_data_value’. Eleva-
tion should be in meters and latitude is in decimal degrees. Additional metadata columns
will be added to the config file for each site, e.g. ‘QC_flag’, ‘anemometer_height’, and any
others.

• data_dict (dict) – dictionary that maps flux-data-qaqc config names to user’s col-
umn names in input files header e.g. {‘net_radiation_col’: ‘netrad’, ‘net_radiation_units’
: ‘w/m2’} Anything that flux-data-qaqc config files “DATA” section can be present here
including QC flag names, multiple soil moisture names and weights.

Keyword Arguments out_dir (str or None) – default None. Directory to save config files,
if None then save to currect working directory.

Returns

list of pathlib.Path objects of full paths to each config file written.

Return type configs (list)

Raises Exception – if one of the mandatory metadata columns does not exist in meta_df.

5.4. utility classes and functions 67

https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception

flux-data-qaqc Documentation

68 Chapter 5. API Reference

CHAPTER 6

Automated testing with pytest

Software tests are automatically run each time a change to flux-data-qaqc is made on the master branch in
GitHub using this GitHub Actions workflow. Automated tests help spot potential bugs early so that they be identified
and corrected efficiently resulting in an improved user experience.

6.1 Running tests manually

pytest is required to run software tests that are provided. You can install pytest with PIP:

pip install pytest

The tests utilize the example flux input data and flux-data-qaqc configuration files that are provided with the
software whether installed from PyPI or GitHub. These files can be found here.

To run the tests, navivgate to the root directory of the source code (from the command line or shell) and run pytest:

pytest

This will print out basic test results, usage of pytest plugins and command line options can be used for getting more
information out of the tests.

69

https://github.com/Open-ET/flux-data-qaqc/actions/workflows/fluxdataqaqc_tests.yml
https://github.com/Open-ET/flux-data-qaqc/tree/master/examples

flux-data-qaqc Documentation

70 Chapter 6. Automated testing with pytest

CHAPTER 7

Contributors

7.1 OpenET team

Guidance and feedback has been given by the OpenET team members,

• Dr. Ayse Kilic

• Christian Dunkerly

• Forrest Melton

• Dr. Gabriel Senay

• Dr. Joshua Fisher

• Dr. John Volk

• Dr. Justin Huntington

• Dr. Martha Anderson

• Dr. Richard G. Allen

7.2 Acknowledgements

The Energy Balance Ratio correction method was modified from the FLUXNET2015 methodology for correcting
daily latent energy and sensible heat. Additionally, FLUXNET and AmeriFlux eddy covariance data was used for
code development and we thank them for mantaining and providing eddy flux data.

We would also like to acknowledge the RefET python package and its developer Charles Morton. RefET methods
are used in flux-data-qaqc for calculating the American Soceity of Civil Engineers Standardized reference ET
using the hourly and daily formulations, as well as the calculation for potential solar radiation.

71

https://etdata.org/
https://fluxnet.fluxdata.org/
https://ameriflux.lbl.gov/
https://github.com/WSWUP/RefET

flux-data-qaqc Documentation

7.3 Contributing

flux-data-qaqc is an open-source Python package and anyone seriously interested in contributing is encouraged
to do so. Look for current issues to get started or offer direct changes with a pull request.

7.4 Report issues or problems with the software

Please open a GitHub issue if you have a technical problem with the software. The issues page is here.

7.5 Seek support or give feedback

Any suggestions or feedback that are nontechnical but related to software development or usage please open a GitHub
issue. Any other feedback should be sent to John.Volk@dri.edu.

72 Chapter 7. Contributors

https://github.com/Open-ET/flux-data-qaqc/issues
https://github.com/Open-ET/flux-data-qaqc/issues
https://github.com/Open-ET/flux-data-qaqc/issues
mailto:John.Volk@dri.edu

CHAPTER 8

Change Log

8.1 Version 0.1.6

Add automated tests using GitHb Actions, see here and added in description of how to run tests locally on docs.

Remove xlrd reader as a dependency due to outdated reading ability as a Pandas excel reader.

Other minor bug fixes related to Plot class.

Ass JOSS paper and publish software on Zenodo.

8.2 Version 0.1.5

Add configuration writing function util.write_configs to util module to facilitate batch processing os sim-
ilar formatted input files via a station metadata file and data dictionary.

Update check on energy balance ratio closure correction to also check if the inverse of the energy balance ratio is
greater than 0.5, in other words 1

𝐸𝐵𝑅 > |0.5| to avoid closure correction factors that are too small. This check occurs
both after step 3 and 6 of the energy balance closure correction routine.

8.3 Version 0.1.4

Relax default allowance for missing days threshold from 90 (~ 3 days) to 80 % (~ 6 days) in the monthly resample
algorithm. In other words if a month has more than 80 % missing daily values, its monthly aggregate will not be resam-
pled, it will be replaced with a null value. The threshold is a keyword argument to the util.monthly_resample
function, but the default is used in any automatic resampling of variables. As a reminder, the number of missing days
per month which is tabulated for some variables can be used to fine tune this filter. This change was implemented in
version 0.1.4.post1.

Add daily ASCE standardized reference ET calculation option from the QaQc.daily_ASCE_refET method. Also
added automatic estimation of daily maximum and minimum air temperature from input (e.g. hourly) data and added

73

https://github.com/Open-ET/flux-data-qaqc/actions/workflows/fluxdataqaqc_tests.yml

flux-data-qaqc Documentation

the input variables to the list of variables that are linearly interpolated before taking daily aggregates in the QaQc
constructor. In other words, the inputs to the daily ASCE reference ET formulation: ea, tmin, tmax, rs, wind speed,
are interpolated over daytime and nighttime hourly gaps (2 and 4 default) before taking daily means, mins, maxs, and
subsequently used in the daily ASCE calculations.

Changed default keyword argument reference to “short” of the Data.hourly_ASCE_refET method.

Add automatic calculations for high frequency (e.g. hourly or half hourly) data including dew temperature and relative
humidity from ea and es if available. The calculations occur when first loading input data, i.e. when Data.df
attribute is accessed. Saturation vapor pressure (es) if calculated at hourly/daily frequency is now saved and added to
Data.df and QaQc.df properties.

Require Pandas >= 1.0, changes are not backwards compatible due to internal pandas argument deprecations particu-
larly in the pandas.grouper object.

Require Bokeh >= 2.0, changes are not backwards compatible due to legend keyword argument name changes in
Bokeh 2.

Minor changes to remove package deprecation warnings from Pandas and Bokeh related to their respective large
changes.

Add package dependency openpyxl package as a fallback for reading in headers of Excel files when xlrd is
unmaintained and failing with previously working tools for reading metadata on Excel files.

Add a requirements.txt file with package.

8.4 Version 0.1.3

Add option to use gridMET grass reference ET (ETo) and EToF for gap filling daily ET. The default behavior still uses
alfalfa reference ET, to use ETo assign the refET="ETo" keyword argument to QaQc.correct_data or directly
to QaQc._ET_gap_fill. The ET and ET reference fraction plot labels are updated to show the correct reference
ET variable used.

Improve scaling of scatter plots to give equal x and y axis lengths, change return of Plot.scatter_plot to return
tuple of (xmin, xmax, ymin, ymax) for use in plotting one to one lines or limiting axes lengths.

8.5 Version 0.1.2

Change default functionality of the QaQc.write method to use the internal variable names (as opposed to the input
names) of flux-data-qaqc in the header files of the output daily and monthly time series CSV files. For example,
the column for net radiation is always named and saved as “Rn”. This can be reversed to the previous behavior of
using the user’s input names by setting the new use_input_names keyword argument to QaQc.write to True.

Change the Plot.scatter_plot underlying call to the bokeh modules scatter plot as opposed to the set circle
glyph plot. This allows the user to change the symbol from circle to others by passing a valid value to the scatter_plot’s
marker keyword argument, e.g. marker='cross'.

8.6 Version 0.1.1

Add least squares linear regression method for single or multivariate input; specifically the QaQc.lin_regress()
method. It can be used to correct energy balance components or for any arbitrary time series data loaded in a QaQc
instance. It produces and returns a readable table with regression results (fitted coefficients, root-mean-square-error,

74 Chapter 8. Change Log

flux-data-qaqc Documentation

etc.) which can be accessed from QaQc.lin_regress_results after calling the method. The default regression
if used to correct energy balance components assumes net radiation is accurate (as the dependent variable):

𝑅𝑛 = 𝑐0 + 𝑐1𝐺+ 𝑐2𝐿𝐸 + 𝑐3𝐻

where 𝑐0 = 0.

This regression utilizes the scikit-learn Python module and therefore it was added to the environment and setup files
as a dependency.

8.7 Version 0.1.0

Add hourly ASCE standardized reference ET calculation to the Data class as Data.hourly_ASCE_refET with
options for short and tall (grass and alfalfa) reference ET calculations. If the input data is hourly or higher frequency
the input data for the reference ET calculation will automatically be resampled to hourly data. If the input data is hourly
then the resulting reference ET time series will be merged with the Data.df attribute otherwise if the input data is at
a temporal frequency > hourly, then the reference ET time series will be return by the Data.hourly_ASCE_refET
method.

Add methods and options to linearly interpolate energy balance variables based on length of gaps during daytime
(𝑅𝑛 > 0) and night (𝑅𝑛 < 0). These methods are run automatically by the QaQc constructor if temporal fre-
quency of input is detected as less than daily. New keyword arguments to QaQc are max_interp_hours and
max_interp_hours_night respectively.

Other notable changes:

• first release on GitHub

• creation of this file/page (the Change Log)

• add optional return options to plot methods of Data and QaQc objects for custimization of default plots or to
show/use a subset of them

8.8 Version 0.0.9

Major improvements and notabable changes include:

• add package to PyPI

• change allowable gap percentage for monthly time series to 10 % from 70 %

• add reading of wind direction data, BSD3 license, add package data

• fix bugs related to filtering of subday gaps

• improve plots and other error handling, add feature to hide lines in line plots

8.9 Version 0.0.5

Major improvements and notabable changes include:

• first documentation on ReadTheDocs

• add multiple pages in docs such as installation, config options, basic tutorials, full API reference, etc.

• improve and streamline config file options

8.7. Version 0.1.0 75

https://flux-data-qaqc.readthedocs.io/en/latest/

flux-data-qaqc Documentation

• add vapor pressure and vapor pressure deficit calculations for hourly or lower frequency data in the Data.df
property (upon initial loading of time series into memory

• add automatic unit conversions and checks on select input variables using the Convert class in the util
module

• add new plots in default plots from QaQc class, e.g. filtered and raw ETrF

• many rounds of improvements to plots, e.g. hover tooltips, linked axes, style, options for columns, etc.

• modify Energy Balance Ratio to filter out extreme values of filtered Energy Balance Ratio correction factors

• improve temporal resampling with options to drop days with certain fraction of sub-daily gaps

• track number of gap days in monthly time series of corrected ET

• add examples of ET gap-filling to docs and change most example data to use Twitchel Island alfalfa site data
from AmeriFlux

• add plotting of input data using plot method of Data instance which allows for viewing of input data at its
initial temporal frequency

8.10 Version 0.0.1

First working version, many changes, milestones included:

• basic templates and working versions of the Data, QaQc, and Plot classes

• versions and improvements to daily and monthly resampling

• Bowen and Energy Balance Ratio correction routines

• example Jupyter notebooks including with FLUXNET and USGS data

• calculation of potential clear sky radiation

• changing variable naming system to use internal and user names

• ability to read in multiple soil heat flux and soil moisture measurements and calculate weighted averages

• make package installable and Conda environment

• add input data filtering using quality control flags (numeric threshold and flags)

• reading of input variables’ units

• added the util submodule with methods for resammpling time series

• ability to take non-weighted averages for any acceptable input variable

• add config file options like date parsing

• removed filtering and smoothing options from Bowen Ratio method and other modifications to it

• add methods for downloading gridMET variables based on location in CONUS

• add routine for gap filling ET based on gridMET ETrF that is smoothed and filtered

• improved Plot class to contain modular plot methods (line and scatter) for use with arbitrary data

• changed internal variable naming, e.g. etr to ETr

• methods to estimate ET from LE that consider the latent heat of vaporization is affected by air temp.

• other updates to improve code structure and optimization of calculations

76 Chapter 8. Change Log

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

77

flux-data-qaqc Documentation

78 Chapter 9. Indices and tables

Python Module Index

f
fluxdataqaqc.util, 66

79

flux-data-qaqc Documentation

80 Python Module Index

Index

A
add_lines() (fluxdataqaqc.Plot static method), 63
agg_dict (fluxdataqaqc.QaQc attribute), 54, 56
allowable_units (fluxdataqaqc.util.Convert at-

tribute), 66
apply_qc_flags() (fluxdataqaqc.Data method), 49

C
climate_file (fluxdataqaqc.Data attribute), 47
config (fluxdataqaqc.Data attribute), 47
config (fluxdataqaqc.QaQc attribute), 54
config_file (fluxdataqaqc.Data attribute), 47
config_file (fluxdataqaqc.QaQc attribute), 54
Convert (class in fluxdataqaqc.util), 66
convert() (fluxdataqaqc.util.Convert class method),

66
corr_meth (fluxdataqaqc.QaQc attribute), 54
corr_methods (fluxdataqaqc.QaQc attribute), 54, 56
correct_data() (fluxdataqaqc.QaQc method), 56
corrected (fluxdataqaqc.QaQc attribute), 54

D
daily_ASCE_refET() (fluxdataqaqc.QaQc method),

57
Data (class in fluxdataqaqc), 47
df (fluxdataqaqc.Data attribute), 50
df (fluxdataqaqc.QaQc attribute), 57
download_gridMET() (fluxdataqaqc.QaQc method),

58

E
elevation (fluxdataqaqc.Data attribute), 48
elevation (fluxdataqaqc.QaQc attribute), 54

F
fluxdataqaqc.util (module), 66
from_dataframe() (fluxdataqaqc.QaQc class

method), 58

G
gridMET_exists (fluxdataqaqc.QaQc attribute), 54
gridMET_meta (fluxdataqaqc.QaQc attribute), 55, 58

H
header (fluxdataqaqc.Data attribute), 47
hourly_ASCE_refET() (fluxdataqaqc.Data

method), 51

I
inv_map (fluxdataqaqc.Data attribute), 48
inv_map (fluxdataqaqc.QaQc attribute), 55

L
latitude (fluxdataqaqc.Data attribute), 48
latitude (fluxdataqaqc.QaQc attribute), 55
lin_regress() (fluxdataqaqc.QaQc method), 58
line_plot() (fluxdataqaqc.Plot static method), 64
longitude (fluxdataqaqc.Data attribute), 48
longitude (fluxdataqaqc.QaQc attribute), 55

M
monthly_df (fluxdataqaqc.QaQc attribute), 60
monthly_resample() (in module fluxdataqaqc.util),

66

N
n_samples_per_day (fluxdataqaqc.QaQc attribute),

55

O
out_dir (fluxdataqaqc.Data attribute), 48
out_dir (fluxdataqaqc.QaQc attribute), 55

P
Plot (class in fluxdataqaqc), 62
plot() (fluxdataqaqc.Data method), 52
plot() (fluxdataqaqc.QaQc method), 60
plot_file (fluxdataqaqc.Data attribute), 48

81

flux-data-qaqc Documentation

plot_file (fluxdataqaqc.QaQc attribute), 55
pretty_unit_names (fluxdataqaqc.util.Convert at-

tribute), 66

Q
QaQc (class in fluxdataqaqc), 53
qc_var_pairs (fluxdataqaqc.Data attribute), 48

R
required_units (fluxdataqaqc.util.Convert at-

tribute), 66

S
scatter_plot() (fluxdataqaqc.Plot static method),

65
site_id (fluxdataqaqc.Data attribute), 48
site_id (fluxdataqaqc.QaQc attribute), 55
soil_var_weight_pairs (fluxdataqaqc.Data at-

tribute), 48

T
temporal_freq (fluxdataqaqc.QaQc attribute), 55

U
units (fluxdataqaqc.Data attribute), 48
units (fluxdataqaqc.QaQc attribute), 55

V
variable_names_dict (fluxdataqaqc.Data at-

tribute), 48, 53
variables (fluxdataqaqc.Data attribute), 48
variables (fluxdataqaqc.QaQc attribute), 55

W
write() (fluxdataqaqc.QaQc method), 62
write_configs() (in module fluxdataqaqc.util), 67

X
xl_parser (fluxdataqaqc.Data attribute), 48

82 Index

	Installation
	Developer mode

	Configuration Options and Caveats
	Example data description
	Setting up a config file
	Input formatting and caveats
	Quality-based data filtering
	Averaging data from multiple sensors

	Tutorial
	Description of example datasets
	Loading input
	Visualize input data
	Temporal resampling
	Energy balance corrections
	Other calculations
	A note on units
	Save resampled and corrected data
	Visualize resampled and corrected data

	Closure Methodologies
	Data description
	Energy Balance Ratio method
	Bowen Ratio method

	API Reference
	Data
	QaQc
	Plot
	utility classes and functions

	Automated testing with pytest
	Running tests manually

	Contributors
	OpenET team
	Acknowledgements
	Contributing
	Report issues or problems with the software
	Seek support or give feedback

	Change Log
	Version 0.1.6
	Version 0.1.5
	Version 0.1.4
	Version 0.1.3
	Version 0.1.2
	Version 0.1.1
	Version 0.1.0
	Version 0.0.9
	Version 0.0.5
	Version 0.0.1

	Indices and tables
	Python Module Index
	Index

